【題目】某地政府鑒于某種日常食品價(jià)格增長(zhǎng)過(guò)快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場(chǎng)價(jià)格為x元/千克,政府補(bǔ)貼為t元/千克,根據(jù)市場(chǎng)調(diào)查,當(dāng)16≤x≤24時(shí),這種食品市場(chǎng)日供應(yīng)量p萬(wàn)千克與市場(chǎng)日需求量q萬(wàn)千克近似地滿足關(guān)系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當(dāng)p=q時(shí)的市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格.

(1)將政府補(bǔ)貼表示為市場(chǎng)平衡價(jià)格的函數(shù),并求出函數(shù)的值域.

(2)為使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?

【答案】見(jiàn)解析

【解析】(1)由p=q得

2(x+4t-14)=24+8ln (16≤x≤24,t≥0).

t=x+ln (16≤x≤24).

∵t′=-<0,∴t是x的減函數(shù).

∴tmin×24+ln +ln +ln ;

tmax×16+ln +ln

∴值域?yàn)?/span>.

(2)由(1)知t=x+ln (16≤x≤24).

而x=20時(shí),t=×20+ln =1.5(元/千克),

∵t是x的減函數(shù),欲使x≤20,必須t≥1.5(元/千克),要使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為1.5元/千克.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2-8y+12=0,直線l經(jīng)過(guò)點(diǎn)D(-2,0),且斜率為k.

(1)求以線段CD為直徑的圓E的方程.

(2)若直線l與圓C相離,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)的零件的多少隨機(jī)器的運(yùn)轉(zhuǎn)的速度的變化而變化,下表為抽樣試驗(yàn)的結(jié)果:

轉(zhuǎn)速/(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)/件

11

9

8

5

(1)畫出散點(diǎn)圖;

(2)如果對(duì)有線性相關(guān)關(guān)系,請(qǐng)畫出一條直線近似地表示這種線性關(guān)系;

(3)在實(shí)際生產(chǎn)中,若它們的近似方程為,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多為件,那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,問(wèn):

(1)1個(gè)孩子顯露顯性特征的概率是多少?

(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說(shuō)法正確嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三個(gè)結(jié)論:

小王任意買1張電影票,座號(hào)是3的倍數(shù)的可能性比座號(hào)是5的倍數(shù)的可能性大;

高一(1)班有女生22,男生23,從中任找1,則找出的女生可能性大于找出男生的可能性;

1枚質(zhì)地均勻的硬幣,正面朝上的可能性與反面朝上的可能性相同.

其中正確結(jié)論的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x-+a(2-ln x)(a>0),求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程.

(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若曲線僅在兩個(gè)不同的點(diǎn),處的切線都經(jīng)過(guò)點(diǎn),求證:,或;

(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與

輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時(shí)停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨(dú)立,求:

(1)打滿3局比賽還未停止的概率;

(2)比賽停止時(shí)已打局?jǐn)?shù)ξ的分布列與期望E(ξ).

查看答案和解析>>

同步練習(xí)冊(cè)答案