設(shè)函數(shù),其中為常數(shù).
(1)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(2)若函數(shù)的有極值點(diǎn),求的取值范圍及的極值點(diǎn);
(3)求證對(duì)任意不小于3的正整數(shù),不等式都成立.
(1)函數(shù)在定義域上單調(diào)遞增.
(2)當(dāng)且僅當(dāng)時(shí)有極值點(diǎn);當(dāng)時(shí),有唯一最小值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)    
(3)證明見(jiàn)解析。
(1)由題意知,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133305957422.gif" style="vertical-align:middle;" />,
     …… 1分
當(dāng)時(shí),,函數(shù)在定義域上單調(diào)遞增.   …… 2分
(2)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn).
………3分
②當(dāng)時(shí),有兩個(gè)不同解,
時(shí),,
此時(shí),在定義域上的變化情況如下表:










極小值

由此表可知:時(shí),有唯一極小值點(diǎn),   …… 5分
ii)  當(dāng)時(shí),0<<1 此時(shí),,的變化情況如下表:














極大值

極小值

由此表可知:時(shí),有一個(gè)極大值和一個(gè)極小值點(diǎn);綜上所述:當(dāng)且僅當(dāng)時(shí)有極值點(diǎn);當(dāng)時(shí),有唯一最小值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)       …… 8分
(3)由(2)可知當(dāng)時(shí),函數(shù)
此時(shí)有唯一極小值點(diǎn)
          …… 9分
                 
…… 11分
令函數(shù) …… 12分
    …… 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),求的單調(diào)區(qū)間;(3若對(duì)任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù) 
(1)
(2)是否存在實(shí)數(shù)m,使函數(shù)恰有四個(gè)不同的零點(diǎn)?若存在求出的m范圍;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)在兩個(gè)極值點(diǎn),且。
(Ⅰ)求滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫(huà)出滿足這些條件的點(diǎn)的區(qū)域;

(II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 
(1)若上是減函數(shù),求的最大值;
(2)若的單調(diào)遞減區(qū)間是,求函數(shù)y=圖像過(guò)點(diǎn)的切線與兩坐標(biāo)軸圍成圖形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)單調(diào)遞減,
(I)求a的值;
(II)是否存在實(shí)數(shù)b,使得函數(shù)的圖象恰有3個(gè)交點(diǎn),若的取值范圍數(shù)b的值;若不存在,試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),在(-∞,-1),(2,+∞)上單調(diào)遞增,在(-1,2)上單調(diào)遞減,當(dāng)且僅當(dāng)x>4時(shí),
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)與函數(shù)f(x)、g(x)的圖象共有3個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三次函數(shù)時(shí)取極值,且
(Ⅰ) 求函數(shù)的表達(dá)式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133141592292.gif" style="vertical-align:middle;" />,試求、n應(yīng)滿足的條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

="                                                                                           " (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案