【題目】已知函數(shù),,),是函數(shù)的圖象與軸的2個(gè)相鄰交點(diǎn)的橫坐標(biāo),且當(dāng)時(shí),取得最大值2.

1)求,的值;

2)將函數(shù)的圖象上的每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

【答案】1, 2)最小值;最大值2.

【解析】

1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出,由周期公式求出,由特殊點(diǎn)法的坐標(biāo)求出的值;

2)利用函數(shù)的圖象變換規(guī)律,求得,的解析式,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)在區(qū)間,上的最大值和最小值.

解:(1)因?yàn)?/span>的最大值為2,所以.

因?yàn)?/span>的圖象與軸的2個(gè)相鄰的交點(diǎn)的橫坐標(biāo),

所以.

,所以.

,所以,即.

因?yàn)?/span>,所以.

從而,即

2)由(1)知,.

依題意,

因?yàn)?/span>,所以.

當(dāng),即時(shí),取得最小值;

當(dāng),即時(shí),取得最大值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在上的函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若、滿足,則稱更接近.當(dāng),試比較哪個(gè)更接近,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解高二年級(jí)中華傳統(tǒng)文化經(jīng)典閱讀的整體情況,從高二年級(jí)隨機(jī)抽取10名學(xué)生進(jìn)行了兩輪測(cè)試,并把兩輪測(cè)試成績(jī)的平均分作為該名學(xué)生的考核成績(jī).記錄的數(shù)據(jù)如下:

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

6號(hào)

7號(hào)

8號(hào)

9號(hào)

10號(hào)

第一輪測(cè)試成績(jī)

96

89

88

88

92

90

87

90

92

90

第二輪測(cè)試成績(jī)

90

90

90

88

88

87

96

92

89

92

(Ⅰ)從該校高二年級(jí)隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生考核成績(jī)大于90 分的概率;

(Ⅱ)從考核成績(jī)大于90分的學(xué)生中再隨機(jī)抽取兩名同學(xué),求這兩名同學(xué)兩輪測(cè)試成績(jī)均大于等于90分的概率;

(Ⅲ)記抽取的10名學(xué)生第一輪測(cè)試的平均數(shù)和方差分別為,,考核成績(jī)的平均數(shù)和方差分別為,試比較, 的大小.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓柱體木材的橫截面半徑,從該木材中截取一段圓柱體,再加工制作成直四棱柱,該四棱柱的上、下底面均為等腰梯形,分別內(nèi)接于圓柱的上、下底面,下底面圓的圓心在梯形內(nèi)部,,,設(shè).

1)求梯形的面積;

2)當(dāng)取何值時(shí),直四棱柱的體積最大?并求出最大值(注:木材的長(zhǎng)度足夠長(zhǎng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為且右焦點(diǎn)到右準(zhǔn)線的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程:

2)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),與交于點(diǎn)是弦的中點(diǎn),直線交于點(diǎn).的面積之比是,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)直線l與曲線C是否有公共點(diǎn)?并說(shuō)明理由;

2)若直線l與兩坐標(biāo)軸的交點(diǎn)為A,B,點(diǎn)P是曲線C上的一點(diǎn),求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為

A. 2B. 3C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市美團(tuán)外賣(mài)配送員底薪是每月1800元,設(shè)每月配送單數(shù)為X,若,每單提成3元,若,每單提成4元,若,每單提成4.5元,餓了么外賣(mài)配送員底薪是每月2100元,設(shè)每月配送單數(shù)為Y,若,每單提成3元,若,每單提成4元,小想在美團(tuán)外賣(mài)和餓了么外賣(mài)之間選擇一份配送員工作,他隨機(jī)調(diào)查了美團(tuán)外賣(mài)配送員甲和餓了么外賣(mài)配送員乙在2019年4月份(30天)的送餐量數(shù)據(jù),如下表:

表1:美團(tuán)外賣(mài)配送員甲送餐量統(tǒng)計(jì)

日送餐量x(單)

13

14

16

17

18

20

天數(shù)

2

6

12

6

2

2

表2:餓了么外賣(mài)配送員乙送餐量統(tǒng)計(jì)

日送餐量x(單)

11

13

14

15

16

18

天數(shù)

4

5

12

3

5

1

(1)設(shè)美團(tuán)外賣(mài)配送員月工資為,餓了么外賣(mài)配送員月工資為,當(dāng)時(shí),比較的大小關(guān)系

(2)將4月份的日送餐量的頻率視為日送餐量的概率

(。┯(jì)算外賣(mài)配送員甲和乙每日送餐量的數(shù)學(xué)期望E(X)和E(Y

(ⅱ)請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案