【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
【答案】
(1)解:由三角形的面積公式可得S△ABC= acsinB= ,
∴3csinBsinA=2a,
由正弦定理可得3sinCsinBsinA=2sinA,
∵sinA≠0,
∴sinBsinC=
(2)解:∵6cosBcosC=1,
∴cosBcosC= ,
∴cosBcosC﹣sinBsinC= ﹣ =﹣ ,
∴cos(B+C)=﹣ ,
∴cosA= ,
∵0<A<π,
∴A= ,
∵ = = =2R= =2 ,
∴sinBsinC= = = = ,
∴bc=8,
∵a2=b2+c2﹣2bccosA,
∴b2+c2﹣bc=9,
∴(b+c)2=9+3cb=9+24=33,
∴b+c=
∴周長a+b+c=3+
【解析】(1)根據(jù)三角形面積公式和正弦定理可得答案,(2)根據(jù)兩角余弦公式可得cosA= ,即可求出A= ,再根據(jù)正弦定理可得bc=8,根據(jù)余弦定理即可求出b+c,問題得以解決.
【考點精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正定理:;余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,有下列4個命題:
①若,則的圖象關(guān)于直線對稱;
②與的圖象關(guān)于直線對稱;
③若為偶函數(shù),且,則的圖象關(guān)于直線對稱;
④若為奇函數(shù),且,則的圖象關(guān)于直線對稱.
其中正確的命題為 .(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體中,是邊長為2的等邊三角形,為的中點,.
(1)若平面平面,證明:;
(2)求證:;
(3)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班20名同學(xué)某次數(shù)學(xué)測試的成績可繪制成如下莖葉圖,由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計全班同學(xué)的平均成績.
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計全班同學(xué)的平均成績 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)設(shè)根據(jù)莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設(shè),且各自取得每一個可能值的機會相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時, x2+lnx< x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,射線y=x(x≥0)和y=0(x≥0)上分別依次有點A1、A2 , …,An , …,和點B1 , B2 , …,Bn…,其中 , , .且 , (n=2,3,4…).
(1)用n表示|OAn|及點An的坐標(biāo);
(2)用n表示|BnBn+1|及點Bn的坐標(biāo);
(3)寫出四邊形AnAn+1Bn+1Bn的面積關(guān)于n的表達(dá)式S(n),并求S(n)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=log2an,Tn為{bn}的前n項和,求證 <2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com