【題目】設(shè)數(shù)列{an}的前n項和為Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足,求{bn}的前n項和Tn.
【答案】(1) 數(shù)列{an}是首項為3、公差為2的等差數(shù)列,從而得an=2n+1;(2).
【解析】
(1)由,可得,兩式相減
整理得,從而可得數(shù)列為等差數(shù)列,進(jìn)而可得結(jié)果;(2)由(1)得,利用裂項相消法可得結(jié)果.
(1)由條件知Sn=nan+1-n2-n,①
當(dāng)n=1時,a2-a1=2;
當(dāng)n≥2時,Sn-1=(n-1)an-(n-1)2-(n-1),②
①-②得an=nan+1-(n-1)an-2n,
整理得an+1-an=2.
綜上可知,數(shù)列{an}是首項為3、公差為2的等差數(shù)列,從而得an=2n+1.
(2)由(1)得,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班要從5名男生3名女生中選出5人擔(dān)任5門不同學(xué)科的課代表,請分別求出滿足下列條件的方法種數(shù).
(1)所安排的女生人數(shù)必須少于男生人數(shù);
(2)其中的男生甲必須是課代表,但又不能擔(dān)任數(shù)學(xué)課代表;
(3)女生乙必須擔(dān)任語文課代表,且男生甲必須擔(dān)任課代表,但又不能擔(dān)任數(shù)學(xué)課代表.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人是“微信控”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知定點,點P是圓上任意一點,線段的垂直平分線與半徑相交于點.
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)過定點且斜率為的直線與的軌跡交于兩點,若,求點到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某電視娛樂節(jié)目的游戲活動中,每人需完成A、B、C三個項目.已知選手甲完成A、B、C三個項目的概率分別為、、.每個項目之間相互獨立.
(1)選手甲對A、B、C三個項目各做一次,求甲至少完成一個項目的概率.
(2)該活動要求項目A、B 各做兩次,項目C做三次.若兩次項目A均完成,則進(jìn)行項目B,并獲得積分a;兩次項目B均完成,則進(jìn)行項目C,并獲積分3a;三次項目C只要兩次成功,則該選手闖關(guān)成功并獲積分6a(積分不累計),且每個項目之間互相獨立.用X表示選手甲所獲積分的數(shù)值,寫出X的分布列并求數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在一個周期內(nèi)的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實根個數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0且a≠1).
(1)若f(x)為定義域上的增函數(shù),求實數(shù)a的取值范圍;
(2)令a=e,設(shè)函數(shù),且g(x1)+g(x2)=0,求證:x1+x2≥2+.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com