函數(shù)f(x)=sin(ω x+φ)  (ω>0, |φ|<
π
2
)
在它的某一個(gè)周期內(nèi)的單調(diào)減區(qū)間是[
12
, 
11π
12
]

(1)求f(x)的解析式;
(2)將y=f(x)的圖象先向右平移
π
6
個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="dxzjzbf" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
2
倍(縱坐標(biāo)不變),所得到的圖象對(duì)應(yīng)的函數(shù)記為g(x),求函數(shù)g(x)在[
π
8
, 
8
]
上的最大值和最小值.
分析:(1) 根據(jù)周期性求出ω,根據(jù)頂點(diǎn)坐標(biāo)求出∅值,從而得到f(x)的解析式.
(2)根據(jù)三角函數(shù)圖象的變換求出函數(shù)g(x) 的解析式,根據(jù)角的范圍結(jié)合單調(diào)性求出最值.
解答:解:(1)由條件,
T
2
=
11π
12
-
12
=
π
2
,∴
ω
,∴ω=2,又sin(2×
12
+φ)=1
,∴φ=-
π
3
,
∴f(x)的解析式為f(x)=sin(2 x-
π
3
)

(2)將y=f(x)的圖象先向右平移
π
6
個(gè)單位,得sin(2 x-
3
)
,∴g(x)=sin(4 x-
3
)

x∈[
π
8
, 
8
],  ∴-
π
6
≤4x-
3
6

∴函數(shù)g(x)在[
π
8
, 
8
]
上的最大值為1,最小值為-
1
2
點(diǎn)評(píng):本題考查求三角函數(shù)的解析式的方法,三角函數(shù)圖象的變換,三角函數(shù)的周期性、單調(diào)性、及最值.根據(jù)角的范圍
結(jié)合單調(diào)性求最值,是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A、向左平移
π
8
個(gè)單位長度
B、向右平移
π
8
個(gè)單位長度
C、向左平移
π
4
個(gè)單位長度
D、向右平移
π
4
個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
3
)
(ω>0)的最小正周期為π,將函數(shù)y=f(x)的圖象向右平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于原點(diǎn)對(duì)稱,則m的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+
π
6
)
的導(dǎo)函數(shù)y=f'(x)的部分圖象如圖所示:圖象與y軸交點(diǎn)P(0,
3
3
2
)
,與x軸正半軸的兩交點(diǎn)為A、C,B為圖象的最低點(diǎn),則S△ABC=
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌一模)函數(shù)f(x)=sin(
π
4
+x)sin(
π
4
-x)
的最小正周期是
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)在△ABC中,內(nèi)角A、B、C的對(duì)邊長分別為a、b、c,已知函數(shù)f(x)=sin(2x-
π
6
)
滿足:對(duì)于任意x∈R,f(x)≤f(A))恒成立.
(1)求角A的大小;
(2)若a=
3
,求BC邊上的中線AM長的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案