在兩個(gè)學(xué)習(xí)基礎(chǔ)相當(dāng)?shù)陌嗉?jí)實(shí)行某種教學(xué)措施的實(shí)驗(yàn),測(cè)試結(jié)果見(jiàn)下列聯(lián)表,
優(yōu)、良、中 總計(jì)
實(shí)驗(yàn)班 48 2 50
對(duì)比班 38 12 50
總計(jì) 86 14 100
隨機(jī)變量K2的觀測(cè)值為
 
.(保留四個(gè)有效數(shù)字)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)相關(guān)指數(shù)觀測(cè)值的計(jì)算公式計(jì)算,可得答案.
解答: 解:K2=
100×(48×12-2×38)2
86×14×50×50
=306,
故答案為:306.
點(diǎn)評(píng):本題考查了相關(guān)指數(shù)觀測(cè)值的計(jì)算公式,熟練記憶公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào) A1 A2 A3 A4 A5
質(zhì)量指標(biāo)
x,y,z
(1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)
產(chǎn)品編號(hào) A6 A7 A8 A9 A10
質(zhì)量指標(biāo)
x,y,z
(1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率.
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,
①用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,
3
2
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將5名志愿者分配到3各不同的世博會(huì)場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{lnan}是公差為1的等差數(shù)列,其前n項(xiàng)和為Sn,且S11=55,則a2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2010年,我國(guó)南方省市遭遇旱澇災(zāi)害,為防洪抗旱,某地區(qū)大面積植樹(shù)造林,如圖,在區(qū)域{(x,y)|x≥0,y≥0}內(nèi)植樹(shù),第一棵樹(shù)在A1(0,1)點(diǎn),第二棵樹(shù)在B1(1,1)點(diǎn),第三棵樹(shù)在C1(,0)點(diǎn),第四棵樹(shù)在C2(2,0)點(diǎn),接著按圖中箭頭方向,每隔一個(gè)單位種一顆樹(shù),那么,第2014棵樹(shù)所在的點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果袋中有6個(gè)紅球,4個(gè)白球,從中取一個(gè)球,(1)記住顏色后放回,連續(xù)摸4次,則恰好第四次摸到紅球的概率為
 
,(2)記住顏色后不放回,連續(xù)摸4次,則恰好第四次摸到紅球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線的參數(shù)方程為
x=tsin50°-1
y=-tcos50°
(t為參數(shù)),則直線的傾斜角為( 。
A、40°B、50°
C、140°D、130°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式2xlnx≥-x2+ax-3對(duì)x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案