解(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),…(2分)
∴f(x)是以4為一個(gè)周期的周期函數(shù).…(4分)
(2)解 當(dāng)0≤x≤1時(shí),f(x)=
x,
設(shè)-1≤x≤0,則0≤-x≤1,∴f(-x)=
(-x)=-
x.
∵f(x)是奇函數(shù),∴f(-x)=-f(x),
∴-f(x)=-
x,即f(x)=
x.…(6分)
故f(x)=
x(-1≤x≤1)…(8分)
再設(shè)1<x≤3,則-1<x-2≤1,∴f(x-2)=
(x-2),
又∵f(x-2)=-f(x),∴-f(x)=
(x-2),可得f(x)=-
(x-2)(1<x≤3).
綜上所述,f(x)在[-1,3]的解析式為:f(x)=
…(10分)
(3)由f(x)=-
,當(dāng)x∈[-1,3)時(shí),解得x=-1.
∵f(x)是以4為周期的周期函數(shù).
∴f(x)=-
的所有解為x=4n-1 (n∈Z).…(12分)
令0≤4n-1≤2011,則
≤n≤503,
又∵n∈Z,∴1≤n≤503 (n∈Z),
∴在[0,2 011]上共有503個(gè)x使f(x)=-
.…(14分)
分析:(1)由已知等式f(x+2)=-f(x),用x+2替換x,結(jié)合函數(shù)周期性的定義和已知條件,不難得到f(x)是以4為一個(gè)周期的周期函數(shù).
(2)根據(jù)函數(shù)在[0,1]上的表達(dá)式結(jié)合函數(shù)為奇函數(shù),可得當(dāng)-1≤x≤0時(shí),f(x)=
x.再設(shè)1<x≤3,則得f(x-2)=
(x-2)=-f(x),從而可得f(x)在區(qū)間(1,3]上的表達(dá)式,綜上所述,可得f(x)在[-1,3]的解析式.
(3)當(dāng)x∈[-1,3)時(shí),f(x)=-
的解是x=-1,再結(jié)合f(x)是以4為周期的函數(shù)可得:f(x)=-
的所有解為x=4n-1 (n∈Z),再解不等式,通過(guò)找整數(shù)解得到使f(x)=-
在[0,2 011]上的所有x的個(gè)數(shù).
點(diǎn)評(píng):本題以分段函數(shù)為例,求函數(shù)的周期并求函數(shù)的解析式,著重考查了函數(shù)的奇偶性、周期性和方程解的個(gè)數(shù)討論等知識(shí),屬于基礎(chǔ)題.