【題目】隨著甜品的不斷創(chuàng)新,現(xiàn)在的甜品無論是造型還是口感都十分誘人,有顏值、有口味、有趣味的產(chǎn)品更容易得到甜品愛好者的喜歡,創(chuàng)新已經(jīng)成為烘焙作品的衡量標(biāo)準(zhǔn).某“網(wǎng)紅”甜品店生產(chǎn)有幾種甜品,由于口味獨(dú)特,受到越來越多人的喜愛,好多外地的游客專門到該甜品店來品嘗“打卡”,已知該甜品店同一種甜品售價(jià)相同,該店為了了解每個(gè)種類的甜品銷售情況,專門收集了該店這個(gè)月里五種“網(wǎng)紅甜品”的銷售情況,統(tǒng)計(jì)后得如下表格:
甜品種類 | A甜品 | B甜品 | C甜品 | D甜品 | E甜品 |
銷售總額(萬元) | 10 | 5 | 20 | 20 | 12 |
銷售額(千份) | 5 | 2 | 10 | 5 | 8 |
利潤率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 |
(利潤率是指:一份甜品的銷售價(jià)格減去成本得到的利潤與該甜品的銷售價(jià)格的比值.)
(1)從該甜品店本月賣出的甜品中隨機(jī)選一份,求這份甜品的利潤率高于0.2的概率;
(2)從該甜品店的五種“網(wǎng)紅甜品”中隨機(jī)選取2種不同的甜品,求這兩種甜品的單價(jià)相同的概率;
(3)假設(shè)每類甜品利潤率不變,銷售一份A甜品獲利元,銷售一份B甜品獲利元,…,銷售一份E甜品獲利元,依據(jù)上表統(tǒng)計(jì)數(shù)據(jù),隨機(jī)銷售一份甜品獲利的期望為,設(shè),試判斷與的大小.
【答案】(1)(2)(3),見解析
【解析】
(1)本月共賣出3萬份甜品,利潤率高于0.2的是甜品和甜品.共有1萬份,代入古典概型的概率公式即可;
(2)計(jì)算每種甜品的銷售單價(jià)可得,甜品與甜品的銷售單價(jià)為20元,即有兩種“網(wǎng)紅甜品”單價(jià)相同,共有5種“網(wǎng)紅甜品”,根據(jù)計(jì)數(shù)原理即可求出兩種甜品的單價(jià)相同的概率;
(3)列出隨機(jī)變量的所有可能的取值,分別求出每個(gè)值對應(yīng)的概率,即可得到的分布列和期望,計(jì)算,比較即可.
(1)由題意知,本月共賣出3萬份甜品,
利潤率高于0.2的是A甜品和D甜品,共有1萬份.
設(shè)“這份甜品利潤率高于0.2”為事件A,則.
(2)用銷售總額除以銷售量得到甜品的銷售單價(jià),
可知A甜品與C甜品的銷售單價(jià)為20元,
從五種“網(wǎng)紅甜品”中隨機(jī)選取2種不同的甜品共有種不同方法,
設(shè)“兩種甜品的單價(jià)相同”為事件B,
則.
(3)由題意可得,x可能取的值為8,5,3,10,
,,
,,
因此;
又,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝,字謙光,南宋時(shí)期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為“開方作法本源”圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個(gè)由數(shù)字排列成的三角形數(shù)表,一般形式如下:
基于上述規(guī)律,可以推測,當(dāng)時(shí),從左往右第22個(gè)數(shù)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一工廠計(jì)劃生產(chǎn)某種當(dāng)?shù)卣刂飘a(chǎn)量的特殊產(chǎn)品,月固定成本為1萬元,設(shè)此工廠一個(gè)月內(nèi)生產(chǎn)該特殊產(chǎn)品萬件并全部銷售完.根據(jù)當(dāng)?shù)卣螽a(chǎn)量滿足,每生產(chǎn)件需要再投入萬元,每1萬件的銷售收入為(萬元),且每生產(chǎn)1萬件產(chǎn)品政府給予補(bǔ)助(萬元).(注:月利潤=月銷售收入+月政府補(bǔ)助-月總成本).
(1)寫出月利潤(萬元)關(guān)于月產(chǎn)量(萬件)的函數(shù)解析式;
(2)求該工廠在生產(chǎn)這種特殊產(chǎn)品中所獲得的月利潤最大值(萬元)及此時(shí)的月生產(chǎn)量(萬件)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,,,,為梯形外一點(diǎn),且平面.
(1)求證:平面;
(2)當(dāng)二面角的平面角的余弦值為時(shí),求這個(gè)四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面ABC,,E,F分別為棱PB,PC的中點(diǎn),過E,F的平面分別與棱AB,AC相交于點(diǎn)D,G,給出以下四個(gè)結(jié)論:
①;②;③;④.
則以上正確結(jié)論的個(gè)數(shù)是
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,若對任意的恒成立,求實(shí)數(shù)的值;
(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣東省的生產(chǎn)總值已經(jīng)連續(xù)30年位居全國第一位,如表是廣東省從2012年至2018年7年的生產(chǎn)總值以人民幣(單位:萬億元)計(jì)算的數(shù)據(jù):
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
廣東省生產(chǎn)總值y(單位:萬億元) | 5.71 | 6.25 | 6.78 | 7.28 | 8.09 | 8.97 | 9.73 |
(1)從表中數(shù)據(jù)可認(rèn)為x和y的線性相關(guān)性較強(qiáng),求出以x為解釋變量、y為預(yù)報(bào)變量的線性回歸方程(系數(shù)精確到0.01);
(2)廣東省2018年人口約為1.13億,德國2018年人口約為0.83億.從人口數(shù)量比較看,廣東省比德國人口多,但德國2018年的生產(chǎn)總值為4.00萬億美元,以(1)的結(jié)論為依據(jù),預(yù)測廣東省在哪年的生產(chǎn)總值能超過德國在2018年的生產(chǎn)總值?
參考數(shù)據(jù):yi=52.81, xiyi=230.05, yi2=411.2153, xi2=140.
貨幣兌換:1美元≈7.03元人民幣
參考公式:回歸方程x中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,數(shù)列的前項(xiàng)和為,若不等式對一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)僅有極小值時(shí),不等實(shí)數(shù)滿足.證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com