精英家教網(wǎng)已知三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則
f′(-3)f′(1)
=
 
分析:求導(dǎo)數(shù),結(jié)合圖象可得f′(-1)=f′(2)=0,用c表示出a和b,代入要求的式子把a,b代入可得關(guān)于c的式子的比值,可約去c,即可的答案.
解答:解:求導(dǎo)得:f′(x)=3ax2+2bx+c,結(jié)合圖象可得
x=-1,2為導(dǎo)函數(shù)的零點,即f′(-1)=f′(2)=0,
3a-2b+c=0
12a+4b+c=0
,解得
a=-
c
6
b=
c
4

f′(-3)
f′(1)
=
27a-6b+c
3a+2b+c
=-5
故答案為:-5
點評:本題為導(dǎo)數(shù)和圖象的關(guān)系,用c表示a,b是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)若函數(shù)f(x)過點(-1,2)且在點(1,f(1))處的切線方程為y+2=0,求函數(shù)f(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下,若對于區(qū)間[-3,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤t,求實數(shù)t的最小值;
(Ⅲ)當-1≤x≤1時,|f′(x)|≤1,試求a的最大值,并求a取得最大值時f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

19、已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
(I)求函數(shù)y=f(x)的表達式;
(II)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)g(x)=f(x-m)+4m(m>0)在區(qū)間[m-3,n]上的值域為[-4,16],試求m、n應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),命題p:y=f(x)是R上的單調(diào)函數(shù);命題q:y=f(x)的圖象與x軸恰有一個交點.則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時取極值,且f(-2)=-4.
(1)求函數(shù)f(x)的表達式; 
(2)求函數(shù)的單調(diào)區(qū)間和極值;
(3)求函數(shù)在區(qū)間[-2,5]的最值.

查看答案和解析>>

同步練習冊答案