(本小題滿分13分)

已知三棱錐P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
45°
解:17.證明:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖。
則P(0,0,1),C(0,1,0),B(2,0,0),
M(1,0,),N(,0,0),S(1,,0). 4分
(Ⅰ),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823154510350767.gif" style="vertical-align:middle;" />,
所以CM⊥SN                      ……6分
(Ⅱ),
設(shè)a=(x,y,z)為平面CMN的一個(gè)法向量,
        ……9分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231545104591219.gif" style="vertical-align:middle;" />
所以SN與片面CMN所成角為45°。                          ……13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)如圖,已知四棱錐
底面為直角梯形,,,,
,M是的中點(diǎn)。
(1)  證明:;
(2)  求異面直線所成的角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)
如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點(diǎn),A1A= AB=2.
(Ⅰ)求證: BC⊥平面A1AC;
(Ⅱ)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點(diǎn),又PB=BC,PA=AB.

(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點(diǎn)Q是線段PA上任一點(diǎn),求證:BD⊥DQ;
(Ⅲ)求線段PA上點(diǎn)Q的位置,使得PC//平面BDQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知正三棱柱ABCA1B1C1的底面邊長(zhǎng)是2,DCC1的中點(diǎn),直線AD與側(cè)面BB1C1C所成的角是45°.
(I)求二面角ABDC的大。
(II)求點(diǎn)C到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在長(zhǎng)方體中, ,
(1) 求證:∥面;
(2) 證明:
(3) 一只蜜蜂在長(zhǎng)方體中飛行,求它飛入三棱錐內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
在單位正方體中,M,N,P分別是的中點(diǎn),O為底面ABCD的中心.
( 1)求證:OM平面;
(2)平面MNP平面;
(3)求B到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為不同的直線,為不同的平面,有如下四個(gè)命題:
①若   ②若
③若   ④若
其中正確命題的個(gè)數(shù)是           (   )   
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正三棱錐中,分別是的中點(diǎn),,若此正三棱錐的四個(gè)頂點(diǎn)都在球O的面上,則球O的體積是(         )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案