【題目】已知圓C:(x﹣1)2+(y﹣1)2=1上存在4個(gè)點(diǎn)到直線x+y﹣m=0(m∈R)的距離等于1﹣
(1)求m的取值范圍;
(2)判斷圓C與圓D:x2+y2﹣2mx=0的位置關(guān)系.

【答案】
(1)解:圓的半徑為r=1,

∵圓上存在4個(gè)點(diǎn)到直線x+y﹣m=0(m∈R)的距離等于1﹣

∴圓心(1,1)到直線的距離d< ,

,解得1<m<3


(2)解:圓D的圓心為D(m,0),半徑為|m|=m,

∴兩圓的圓心距為 ,

∵1<m<3,

∴m﹣1< <m+1,

∴圓C與圓D相交


【解析】(1)由圓上存在4個(gè)點(diǎn)到直線x+y﹣m=0(m∈R)的距離等于,可得圓心到直線的距離d<,再應(yīng)用點(diǎn)到直線的距離公式即可;
(2)應(yīng)用圓心距與半徑之間的關(guān)系判斷圓與圓的位置關(guān)系即可;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與圓的三種位置關(guān)系的相關(guān)知識(shí),掌握直線與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若, 時(shí),有成立.

(1)判斷上的單調(diào)性,并證明;

(2)解不等式

(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名大學(xué)生嘗試開家網(wǎng)店銷售一種學(xué)習(xí)用品,經(jīng)測(cè)算每售出1盒該產(chǎn)品可獲利30元,未售出的商品每盒虧損10元.根據(jù)統(tǒng)計(jì)資料,得到該商品的月需求量的頻率分布直方圖如圖所示,該同學(xué)為此購(gòu)進(jìn)180盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示一個(gè)月內(nèi)的市場(chǎng)需求量,y(單位:元)表示一個(gè)月內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

(1)根據(jù)直方圖估計(jì)這個(gè)月內(nèi)市場(chǎng)需求量x的平均數(shù);

(2)將y表示為x的函數(shù);

(3)根據(jù)直方圖估計(jì)這個(gè)月利潤(rùn)不少于3 800元的概率(用頻率近似概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶對(duì)其所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了40個(gè)用戶,得到用戶的滿意度評(píng)分如下:

用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.

(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的10個(gè)樣本的均值和方差

(3)在(2)條件下,若用戶的滿意度評(píng)分在之間,則滿意度等級(jí)為“級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,估計(jì)該地區(qū)滿意度等級(jí)為“級(jí)”的用戶所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{log2(an﹣1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則 + +…+ )=( )
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.

(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得萬(wàn)元到萬(wàn)元的投資利益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)收益的

)請(qǐng)分析函數(shù)是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因.

)若該公司采用函數(shù)模型作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)IEC(國(guó)際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

風(fēng)能分類

一類風(fēng)區(qū)

二類風(fēng)區(qū)

平均風(fēng)速m/s

8.5~10

6.5~8.5

假設(shè)投資A項(xiàng)目的資金為x(x≥0)萬(wàn)元,投資B項(xiàng)目資金為y(y≥0)萬(wàn)元,調(diào)研結(jié)果是:未來(lái)一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風(fēng)區(qū)的B項(xiàng)目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為ξ和η,試寫出隨機(jī)變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計(jì)劃用不超過(guò)100萬(wàn)元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤(rùn)之和z=Eξ+Eη的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案