【題目】已知點(diǎn)F為橢圓ab0)的一個焦點(diǎn),點(diǎn)A為橢圓的右頂點(diǎn),點(diǎn)B為橢圓的下頂點(diǎn),橢圓上任意一點(diǎn)到點(diǎn)F距離的最大值為3,最小值為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若M、N在橢圓上但不在坐標(biāo)軸上,且直線AM∥直線BN,直線ANBM的斜率分別為k1k2,求證:k1k2e21e為橢圓的離心率).

【答案】12)證明見解析

【解析】

1)根據(jù)橢圓上任意一點(diǎn)到點(diǎn)F距離的最大值為3,最小值為1,則有求解.

2)由(1)可知,A2,0),B0,),分別設(shè)直線AM的方程為ykx2),直線BN的方程為ykx,與橢圓方程聯(lián)立,用韋達(dá)定理求得點(diǎn)M,N的坐標(biāo),再利用斜率公式代入k1k2求解.

1)由題意可知,,解得,

b2a2c23

∴橢圓的標(biāo)準(zhǔn)方程為:;

2)由(1)可知,A20),B0,),

設(shè)直線AM的斜率為k,則直線BN的斜率也為k,

故直線AM的方程為ykx2),直線BN的方程為ykx,

得:(3+4k2x216k2x+16k2120

,∴,,

,

得:,

,,

,

,

,

k1k2,

又∵

k1k2e21.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)國民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度,某地區(qū)在2015年以前的年均脫貧率(脫貧的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為70%,2015年開始全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加戶數(shù)占2019年貧困總戶數(shù)的比)及該項(xiàng)目的脫貧率見下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

參加占戶比

45

45

10

脫貧率

96

96

90

那么2019年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)?/span>的函數(shù),如果存在區(qū)間滿足上的單調(diào)函數(shù),且在區(qū)間上的值域也為,則稱函數(shù)為區(qū)間上的“保值函數(shù)”,為“保值區(qū)間”.根據(jù)此定義給出下列命題:①函數(shù)上的“保值函數(shù)”;②若函數(shù)上的“保值函數(shù)”,則;③對于函數(shù)存在區(qū)間,且,使函數(shù)上的“保值函數(shù)”.其中所有真命題的序號為(

A.B.C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x1|+|2x+2|,gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)對x1R,x2R,使得fx1)≥gx2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:ab0)過點(diǎn)E,1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1,F2,其中F1,0).

1)求橢圓C的方程:

2)設(shè)Mx0y0)為橢圓C上異于A,B兩點(diǎn)的任意一點(diǎn),MNAB于點(diǎn)N,直線lx0x+2y0y40,設(shè)過點(diǎn)Ax軸垂直的直線與直線l交于點(diǎn)P,證明:直線BP經(jīng)過線段MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2若函數(shù)有兩個零點(diǎn)分別記為

的取值范圍;

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,來自一帶一路沿線的20國青年評選出了中國的新四大發(fā)明:高鐵、掃碼支付、共享單車和網(wǎng)購.其中共享單車既響應(yīng)綠色出行號召,節(jié)能減排,保護(hù)環(huán)境,又方便人們短距離出行,增強(qiáng)靈活性.某城市試投放3個品牌的共享單車分別為紅車、黃車、藍(lán)車,三種車的計費(fèi)標(biāo)準(zhǔn)均為每15分鐘(不足15分鐘按15分鐘計)1元,按每日累計時長結(jié)算費(fèi)用,例如某人某日共使用了24分鐘,系統(tǒng)計時為30分鐘.A同學(xué)統(tǒng)計了他1個月(按30天計)每天使用共享單車的時長如莖葉圖所示,不考慮每月自然因素和社會因素的影響,用頻率近似代替概率.設(shè)A同學(xué)每天消費(fèi)元.

1)求的分布列及數(shù)學(xué)期望;

2)各品牌為推廣用戶使用,推出APP注冊會員的優(yōu)惠活動:紅車月功能使用費(fèi)8元,每天消費(fèi)打5折;黃車月功能使用費(fèi)20元,每天前15分鐘免費(fèi),之后消費(fèi)打8折;藍(lán)車月功能使用費(fèi)45元,每月使用22小時之內(nèi)免費(fèi),超出部分按每15分鐘1元計費(fèi).設(shè)分別為紅車,黃車,藍(lán)車的月消費(fèi),寫出的函數(shù)關(guān)系式,參考(1)的結(jié)果,A同學(xué)下個月選擇其中一個注冊會員,他選哪個費(fèi)用最低?

3)該城市計劃3個品牌的共享單車共3000輛正式投入使用,為節(jié)約居民開支,隨機(jī)調(diào)查了100名用戶一周的平均使用時長如下表:

時長

(0,15]

(15,30]

(30,45]

(45,60]

人數(shù)

16

45

34

5

在(2)的活動條件下,每個品牌各應(yīng)該投放多少輛?

查看答案和解析>>

同步練習(xí)冊答案