如左圖,四邊形中,的中點(diǎn),,,,將左圖沿直線折起,使得二面角,如右圖.
(1)證明:平面;
(2)求直線與平面所成角的余弦值.
(1)詳見解析;(2).

試題分析:(1)取的中點(diǎn),利用余弦定理求,運(yùn)用勾股定理證明,由線面垂直的性質(zhì)與判定定理求解. (2)建立空間直角坐標(biāo)系,用向量法求解.
試題解析:(1)取的中點(diǎn),連接,,
,,(2分)
由余弦定理知:
,∴,    (4分)
平面,∴平面.    (6分)
(2)以為坐標(biāo)原點(diǎn),建立如圖的空間直角坐標(biāo)系,則,
,,    (8分)

設(shè)平面的法向量為,
,取,
,∵,
,
故直線與平面所成角的余弦值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).

(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在邊長為的正方形中,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,重合后的點(diǎn)記為,構(gòu)成一個三棱錐.

(1)請判斷與平面的位置關(guān)系,并給出證明;
(2)證明平面
(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正四棱柱=2,,,分別在上移動,且始終保持∥平面,設(shè),,則函數(shù)的圖象大致是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐及其三視圖中的主視圖和左視圖如圖9所示,則棱的長為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)l、m是兩條不同的直線,a,β是兩個不同的平面,有下列命題:
①l//m,ma,則l//a ;② l//a,m//a 則 l//m; ③a丄β,la,則l丄β; ④l丄a,m丄a,則l//m.
其中正確的命題的個數(shù)是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是空間的不同直線或不同平面,下列條件中能保證“若,且,則”為真命題的是 (    )
A.為直線, 為平面
B.為平面
C.為直線,z為平面
D.為直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線a,b,c以及平面M,N,給出下面命題: 
①若a//M,b//M, 則a//b                ②若a//M, b⊥M,則b⊥a
③若aM,bM,且c⊥a,c⊥b,則c⊥M   ④若a⊥M, a//N,則M⊥N
其中正確的命題是
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,,是正三角形,的交點(diǎn)恰好是中點(diǎn),又,,點(diǎn)在線段上,且

(1)求證:;
(2)求證:;

查看答案和解析>>

同步練習(xí)冊答案