【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關(guān)注,收視率、點擊率均占據(jù)各大排行榜首位.我們用簡單隨機(jī)抽樣的方法對這部電視劇的觀看情況進(jìn)行抽樣調(diào)查,共調(diào)查了600人,得到結(jié)果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數(shù).
觀看方式 年齡(歲) | 電視 | 網(wǎng)絡(luò) |
150 | 250 | |
120 | 80 |
求:(I)假設(shè)同一組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
(II)根據(jù)表1,通過計算說明我們是否有99%的把握認(rèn)為觀看該劇的方式與年齡有關(guān)?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個不同的零點,則實數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標(biāo);
(Ⅱ)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),
(1)若函數(shù)為奇函數(shù),求的值;
(2)若函數(shù)在上有意義,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com