【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為,、、為圓上點(diǎn),,,分別是以,,為底邊的等腰三角形,沿虛線剪開后,分別以,,為折痕折起,,,使得、、、重合,得到四棱錐.當(dāng)該四棱錐體積取得最大值時(shí),正方形的邊長(zhǎng)為______.

【答案】

【解析】

連接CB于點(diǎn)M,則CB,點(diǎn)MCB的中點(diǎn),連接OC,△OCM為直角三角形,設(shè)正方形的邊長(zhǎng)為2x,將四棱錐的體積表示為x的函數(shù),再利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性,即可得到當(dāng)V最大時(shí)邊長(zhǎng)2x的值.

解:連接CB于點(diǎn)M,則CB,點(diǎn)MCB的中點(diǎn),連接OC,


OCM為直角三角形,設(shè)正方形的邊長(zhǎng)為2x,則OMx,由圓的半徑為4,則4x,設(shè)點(diǎn),,重合于點(diǎn)P,則PM4xx
x2,高,
四棱錐體積,
設(shè),

當(dāng)時(shí),單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減,
所以當(dāng)時(shí),V取得最大值,此時(shí),
即正方形ABCD的邊長(zhǎng)為時(shí),四棱錐體積取得最大值.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點(diǎn)處的切線方程為,求的值;

2)當(dāng)時(shí),求證:;

3)設(shè)函數(shù),其中為實(shí)常數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我們的教材必修一中有這樣一個(gè)問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:

方案一:每天回報(bào)元;

方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;

方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.

記三種方案第天的回報(bào)分別為,.

1)根據(jù)數(shù)列的定義判斷數(shù)列,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;

2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,,點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為的直線與橢圓相交于,兩點(diǎn),使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

若函數(shù)有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列11,2,1,24,12,48,12,48,16,…,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,,依此類推,若該數(shù)列前項(xiàng)和滿足:①2的整數(shù)次冪,則滿足條件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnax+b)﹣xabR,ab≠0).

1)討論fx)的單調(diào)性;

2)若fx≤0恒成立,求eab1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則nm的值不可以是下列四個(gè)選項(xiàng)中的哪組( )

A.n=360m=14B.n=420m=15C.n=540,m=18D.n=660,m=19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問卷調(diào)查,其中每天自主學(xué)習(xí)中國古典文學(xué)的時(shí)間超過3小時(shí)的學(xué)生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認(rèn)為“古文迷”與性別有關(guān)?

(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案