【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲、乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識測試,統(tǒng)計得到成績與專業(yè)的列聯(lián)表:( )
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
班 | 14 | 6 | 20 |
班 | 7 | 13 | 20 |
總計 | 21 | 19 | 40 |
附:參考公式及數(shù)據(jù):
(1)統(tǒng)計量:,().
(2)獨立性檢驗的臨界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
則下列說法正確的是
A. 有的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)
B. 有的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)
C. 有的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)
D. 有的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生此次的數(shù)學(xué)成績,按成績分組,制成了下面頻率分布表:
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | 5 | 0.05 | |
第二組 | 35 | 0.35 | |
第三組 | 30 | 0.30 | |
第四組 | 20 | 0.20 | |
第五組 | 10 | 0.10 | |
合計 | 100 | 1.00 |
(1)試估計該校高三學(xué)生本次月考數(shù)學(xué)成績的平均分和中位數(shù);
(2)如果把表中的頻率近似地看作每個學(xué)生在這次考試中取得相應(yīng)成績的概率,那么從所有學(xué)生中采用逐個抽取的方法任意抽取3名學(xué)生的成績,并記成績落在中的學(xué)生數(shù)為,
求:①在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率;
② 的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)x,y滿足ax<ay(0<a<1),則下列關(guān)系式恒成立的是( )
A.>
B.ln(x2+1)>ln(y2+1)
C.sinx>siny
D.x3>y3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機抽取名學(xué)生的數(shù)學(xué)成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學(xué)生,并在這名學(xué)生中隨機抽取名學(xué)生與張老師面談,求第三組中至少有名學(xué)生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點為圓心,且過點的圓心.
(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;
(2)求圓上任一點與圓上任一點之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.
試判斷是否為“函數(shù)”,并說明理由;
函數(shù)為“函數(shù)”,且當(dāng)時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;
在條件下,當(dāng)時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com