已知x∈Q時(shí),f(x)=1;x為無理數(shù)時(shí),f(x)=0;我們知道函數(shù)表示法有三種:①列表法,②圖象法,③解析法,那么該函數(shù)y=f(x)不能用
①②
①②
表示.
分析:根據(jù)數(shù)集Q和無理數(shù)的元素構(gòu)成,結(jié)合函數(shù)的表示方法進(jìn)行判斷.
解答:解:∵Q和無理數(shù)的元素?zé)o法具體表示,
∴①列表法,②圖象法,都無法建立x和y之間的對(duì)應(yīng)關(guān)系,
∴不能表示函數(shù)y=f(x).
③利用解析法表示為f(x)=
1,x∈Q
0.x為無理數(shù)

故答案為:①②.
點(diǎn)評(píng):本題主要考查函數(shù)表示的三種方法的適用條件,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2+bx(a≠0)
(I)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(II)若a=2,b=1,若函數(shù)k=g(x)-2f(x)-x2在[1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)k的取值范圍;
(III)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P,Q兩點(diǎn),過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于M、N兩點(diǎn),問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
3
x

(1)當(dāng)x∈[
1
3
,3]
時(shí),求f(x)的反函數(shù)g(x);
(2)求關(guān)于x的函數(shù)y=[g(x)]2-2ag(x)+3(a≤3)當(dāng)x∈[-1.1]時(shí)的最小值h(a);
(3)我們把同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)稱為“和諧函數(shù)”:
①函數(shù)在整個(gè)定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q](p<q)使得函數(shù)在區(qū)間[p,q]上的值域?yàn)閇p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數(shù)”?若是,求出p,q的值或關(guān)系式;若不是,請(qǐng)說明理由;
(Ⅱ)若關(guān)于x的函數(shù)y=
x2-1
+t(x≥1)是“和諧函數(shù)”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象:
(1)寫出g(x)的解析式
(2)記F(x)=f(x)+g(x),討論F(x)的單調(diào)性
(3)若a>1,x∈[0,1)時(shí),總有F(x)=f(x)+g(x)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆烏魯木齊一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=loga(x+1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象:
(1)寫出g(x)的解析式
(2)記F(x)=f(x)+g(x),討論F(x)的單調(diào)性
(3)若a>1,x∈[0,1)時(shí),總有F(x)=f(x)+g(x)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案