【題目】已知圓,直線,
(1)求證:直線恒過定點(diǎn);
(2)判斷直線被圓截得的弦長(zhǎng)何時(shí)最長(zhǎng),何時(shí)最短?并求截得的弦長(zhǎng)最短時(shí),求的值以及最短長(zhǎng)度.
【答案】(1)證明見解析(2)直線過圓心時(shí),直線被圓截得的弦長(zhǎng)最長(zhǎng),直線時(shí),直線被圓截得的弦長(zhǎng)最短,,
【解析】
(1)將直線方程變形,即可求得所過定點(diǎn)的坐標(biāo).
(2)當(dāng)直線經(jīng)過圓心時(shí),與圓相交所得弦長(zhǎng)最長(zhǎng),為直徑;當(dāng)與這條直徑所在直線垂直時(shí),所得弦長(zhǎng)最短.由垂徑定理即可求得弦最短值,結(jié)合點(diǎn)到直線距離公式即可求得的值.
(1)證明:直線的方程可化為
聯(lián)立解得
所以直線恒過定點(diǎn)
(2)當(dāng)直線過圓心時(shí),直線被圓截得的弦長(zhǎng)最長(zhǎng).
當(dāng)直線時(shí),直線被圓截得的弦長(zhǎng)最短
直線的斜率為,
由兩點(diǎn)間距離公式可知
因?yàn)閮芍本垂直,由兩直線垂直的斜率關(guān)系可知
解得
此時(shí)直線的方程是
圓心到直線的距離為
所以最短弦長(zhǎng)是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求的值;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽所注《周牌算經(jīng)》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)黃實(shí),利用勾股(股勾)朱實(shí)黃實(shí)弦實(shí),化簡(jiǎn),得勾股弦,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù),)
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),且|MF1|+|MF2|=6,試判別△MF1F2的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為原點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸的交點(diǎn)為,過點(diǎn)作傾斜角為的直線與曲線交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃河被稱為我國(guó)的母親河,它的得名據(jù)說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫(kù)附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開始沿岸設(shè)有若干個(gè)觀測(cè)點(diǎn),兩股河水在流經(jīng)相鄰的觀測(cè)點(diǎn)的過程中,其混合效果相當(dāng)于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.
(1)求經(jīng)過第二個(gè)觀測(cè)點(diǎn)時(shí),兩股河水的含沙量;
(2)從第幾個(gè)觀測(cè)點(diǎn)開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過動(dòng)點(diǎn)C的直線VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).
(1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;
(2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體V﹣DEB的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com