.
(1)求的最大值及最小正周期;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,銳角A滿足,,求的值.

(1) (2)

解析試題分析:(1)求三角函數(shù)性質(zhì),首先將其化為基本三角函數(shù)形式,即.利用降冪公式及配角公式,得,再根據(jù)基本三角函數(shù)性質(zhì)得 (2)解三角形問題,往往利用正余弦定理進行邊角轉(zhuǎn)化. 先由解得,這樣就變成已知兩角,求兩邊的比值.由正弦定理得:.
試題解析:(I)
的最大值為,最小正周期為.
(2)由,
,
又由,解得。
再由,
.
考點:三角函數(shù)性質(zhì),正弦定理

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知中的三個內(nèi)角所對的邊分別為,若銳角滿足,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在中,是邊的中點,且,.

(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,角、所對的邊長分別為、、,

(1)若,求的值;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

三角形ABC中,角A,B,C所對的邊分別為a,b,c,已知求邊C及面積S

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,角的對邊分別為,且,
(1)求角的大。
(2)若,,求邊的長和△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,向量,且向量.
(1)求角A的大小;
(2)若的面積為,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,角所對的邊分別為,函數(shù)處取得最大值.
(1)求角A的大小.
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,acosC+asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面積為,求b、c.

查看答案和解析>>

同步練習冊答案