分析:①當(dāng)k=2時(shí),α的終邊不在y軸,可判斷①錯(cuò)誤;
②將x=
代入y=sin(2x+
),看是否取得最值;
③解方程-x
2+5x-6=0,再判斷;
④利用輔助角公式將y=sinx+cosx轉(zhuǎn)化為y=
sin(x+
),再利用正弦函數(shù)的單調(diào)性判斷即可.
解答:解:對(duì)于①,當(dāng)當(dāng)k=2時(shí),α=π,其終邊在x軸的非正半軸,不在y軸,故①錯(cuò)誤;
對(duì)于②,令y=f(x)=sin(2x+
),
∵f(
)=sin(2×
+
)=sin
=-1,是y=f(x)的最小值,故x=
是函數(shù)y=sin(2x+
)的一條對(duì)稱(chēng)軸方程,即②正確;
對(duì)于③,解方程-x
2+5x-6=0得:x=2或x=3,
∴函數(shù)f(x)=-x
2+5x-6的零點(diǎn)是2,3,正確;
對(duì)于④,令y=sinx+cosx,則y=
(
sinx+
cosx)=
sin(x+
),
∵x是銳角,即0<x<
,
∴x+
∈(
,
),
∴
<sin(x+
)≤1,
∴1<
sin(x+
)≤
,故④正確;
綜上所述,正確的命題序號(hào)為②③④.
故答案為:②③④.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,著重考查三角函數(shù)的圖象與性質(zhì),屬于中檔題.