【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點).

(1)試求拋物線的方程;

(2)已知點兩點在拋物線上,是以點為直角頂點的直角三角形.

①求證:直線恒過定點;

②過點作直線的垂線交于點,試求點的軌跡方程,并說明其軌跡是何種曲線.

【答案】(1);(2)①證明見解析;②,是以為直徑的圓(除去點.

【解析】

1)設(shè)AxA,yA),BxByB),由|OA|=|OB|,可得2pxA2pxB,化簡可得:點AB關(guān)于x軸對稱.因此ABx軸,且∠AOx=30°.可得yA=2p,再利用等邊三角形的面積計算公式即可得出;

2)①由題意可設(shè)直線PQ的方程為:xmy+aPx1y1),Qx2,y2).與拋物線方程聯(lián)立化為:y2mya=0,利用∠PMQ=90°,可得0利用根與系數(shù)的關(guān)系可得m,或m),進(jìn)而得出結(jié)論;

設(shè)Nxy),根據(jù)MNNH,可得0,即可得出.

(1)解依題意,設(shè),

則由,得,

,

因為,,所以,

,,

關(guān)于軸對稱,

所以軸,且

所以.

因為,所以

所以,

,

故拋物線的方程為.

(2)①證明 由題意可設(shè)直線的方程為,

,

,消去,得,

,.

因為,所以.

.

整理得,

,

,

所以.

當(dāng),即時,

直線的方程為

過定點,不合題意舍去.

故直線恒過定點.

②解 設(shè),則,即

,

,

即軌跡是以為直徑的圓(除去點).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì);對任意的,,與兩數(shù)中至少有一個屬于

1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

2)證明:,且;

3)當(dāng)時,若,求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由自然數(shù)組成的元集合,非空集合,且對任意的,都有.

(1)當(dāng)時,求所有滿足條件的集合;

(2)當(dāng)時,求所有滿足條件的集合的元素總和;

(3)定義一個集合的交替和如下:按照遞減的次序重新排列該集合的元素,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合的交替和是,集合的交替和為.當(dāng)時,求所有滿足條件的集合交替和的總和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,若,且的圖象相鄰的對稱軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時, ,且在中, 分別是角的對邊,其面積,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對仿制的100件工藝品測得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值例如區(qū)間的中點值是2.25作為代表.據(jù)此估計這100個數(shù)據(jù)的平均值.

查看答案和解析>>

同步練習(xí)冊答案