【題目】一支車隊(duì)有輛車,某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù)。第一輛車于下午時(shí)出發(fā),第二輛車于下午時(shí)分出發(fā),第三輛車于下午時(shí)分出發(fā),以此類推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車,并都在下午時(shí)停下來(lái)休息.
到下午時(shí),最后一輛車行駛了多長(zhǎng)時(shí)間?
如果每輛車的行駛速度都是,這個(gè)車隊(duì)當(dāng)天一共行駛了多少?
【答案】(1)到下午時(shí),最后一輛車行駛了小時(shí)分鐘;(2)這個(gè)車隊(duì)當(dāng)天一共行駛了
【解析】第一問(wèn)中,利用第一輛車出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛
則第15輛車在小時(shí),最后一輛車出發(fā)時(shí)間為:小時(shí)
第15輛車行駛時(shí)間為:小時(shí)(1時(shí)40分)
第二問(wèn)中,設(shè)每輛車行駛的時(shí)間為:,由題意得到
是以為首項(xiàng),為公差的等差數(shù)列
則行駛的總時(shí)間為:
則行駛的總里程為:運(yùn)用等差數(shù)列求和得到。
解:(1)第一輛車出發(fā)時(shí)間為下午2時(shí),每隔10分鐘即小時(shí)出發(fā)一輛
則第15輛車在小時(shí),最后一輛車出發(fā)時(shí)間為:小時(shí)
第15輛車行駛時(shí)間為:小時(shí)(1時(shí)40分) ……5分
(2)設(shè)每輛車行駛的時(shí)間為:,由題意得到
是以為首項(xiàng),為公差的等差數(shù)列
則行駛的總時(shí)間為:……10分
則行駛的總里程為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(n)=n2sin ),且an=f(n)+f(n+1),則a1+a2+a3+…+a2016的值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的“共筑中國(guó)夢(mèng)”競(jìng)賽活動(dòng)中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評(píng)委將他們的筆試成績(jī)作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒(méi)有給出甲、乙兩班最后一位選手的成績(jī),只是告訴大家,如果某位選手的成績(jī)高于90分(不含90分),則直接“晉級(jí)”.
(1)求乙班總分超過(guò)甲班的概率;
(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.若主持人從甲乙兩班所有選手成績(jī)中分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣mx+1﹣m2 , 若|f(x)|在[0,1]上單調(diào)遞增,則實(shí)數(shù)m的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)().
(1)若函數(shù)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)的極值點(diǎn);
(3)令, ,設(shè), , 是曲線上相異三點(diǎn),其中.求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中, , , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上.
(1)當(dāng)為何值時(shí), 平面?證明你的結(jié)論;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= n,
(1)求通項(xiàng)公式an的表達(dá)式;
(2)令bn=an2n﹣1 , 求數(shù)列{bn}的前n項(xiàng)的和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com