【題目】某家報刊銷售點從報社買進報紙的價格是每份0.35元,賣出的價格是每份0.50元,賣不掉的報紙還可以每份0.08元的價格退回報社.在一個月(30天)里,有20天每天可以賣出400份,其余10天每天只能賣出250.設(shè)每天從報社買進的報紙的數(shù)量相同,則應(yīng)該每天從報社買進多少份,才能使每月所獲得的利潤最大?并計算該銷售點一個月最多可賺得多少元?

【答案】每天買進400份每月所獲得的利潤最大,一個月最多可賺得1170.

【解析】

設(shè)每天應(yīng)從報社買進份報紙,每月所獲得的利潤為元,構(gòu)建函數(shù);對上述函數(shù)進行化簡,通過函數(shù)的單調(diào)性即可得到結(jié)論.

設(shè)每天應(yīng)從報社買進份,易知

設(shè)每月所獲得的利潤為元,則由題意有

當(dāng)時,(元)

: 應(yīng)該每天從報社買進400份,才能使每月所獲得的利潤最大,該銷售點一個月

最多可賺得1170.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)當(dāng)時,證明:為偶函數(shù);

)若上單調(diào)遞增,求實數(shù)的取值范圍;

)若,求實數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校將甲、乙等6名新招聘的老師分配到4個不同的年級,每個年級至少分配1名教師,且甲、乙兩名老師必須分到同一個年級,則不同的分法種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當(dāng)投資甲城市128萬元時,求此時公司總收益;

⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校參加夏令營的同學(xué)有3名男同學(xué)3名女同學(xué),其所屬年級情況如下表:

高一年級

高二年級

高三三年級

男同學(xué)

女同學(xué)

現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同)

1)用表中字母寫出這個試驗的樣本空間;

2)設(shè)為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,寫出事件的樣本點,并求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,是數(shù)列的前項的和.

(1)求數(shù)列的通項公式;

(2)若,成等差數(shù)列,,18,成等比數(shù)列求正整數(shù)的值;

(3)是否存在,使得為數(shù)列中的項若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有四輛汽車其中車的車牌尾號為0,兩輛車的車牌尾號為6,車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知兩輛汽車每天出車的概率為,兩輛汽車每天出車的概率為,且四輛汽車是否出車是相互獨立的.

該公司所在地區(qū)汽車限行規(guī)定如下

(1)求該公司在星期四至少有2輛汽車出車的概率;

(2)設(shè)表示該公司在星期一和星期二兩天出車的車輛數(shù)之和,的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實數(shù),對任意實數(shù),使不等式恒成立,則實數(shù)的取值范圍為________.

查看答案和解析>>

同步練習(xí)冊答案