如圖所示,F(xiàn)1和F2分別是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個焦點,A和B是以O(shè)為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則離心率為( 。
A.
5
-1
B.
3
+1
2
C.
3
+1
D.
5
+1
2

連接AF1,則∠F1AF2=90°,∠AF2B=60°
∴|AF1|=c,|AF2|=
3
c
3
c-c=2a
e=
c
a
=
2
3
-1
=
3
+1

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,右準(zhǔn)線l與兩條漸近線交于P,Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率e的值為( 。
A.
1
2
B.
3
2
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
4
=1
的漸近線方程是(  )
A.y=±
2
3
x
B.y=±
3
2
x
C.y=±
4
9
x
D.y=±
9
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
m
-y2=1
的一條漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
4
-
y2
25
=1的漸近線方程是(  )
A.y=±
25
4
x
B.y=±
4
25
x
C.y=±
5
2
x
D.y=±
2
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓和雙曲線
y2
16
-
x2
m
=1(m>0)有相同的焦點,P(3,4)是橢圓和雙曲線漸近線的一個交點,求m的值及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點P是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓C2:x2+y2=a2+b2的一個交點,且2∠PF1F2=∠PF2F1,其中F1、F2分別為雙曲線C1的左右焦點,則雙曲線C1的離心率為( 。
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
的離心率e=2,右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)滿足( 。
A.必在圓x2+y2=2內(nèi)B.必在圓x2+y2=2外
C.必在圓x2+y2=2上D.以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
10
-
y2
6
=1的焦點坐標(biāo)是( 。
A.(-2,0),(2,0)B.(0,-2),(0,2)C.(0,-4),(0,4)D.(-4,0),(4,0)

查看答案和解析>>

同步練習(xí)冊答案