【題目】已知函數(shù),若,使 成立,則稱為函數(shù)的一個“生成點(diǎn)”,則函數(shù)的“生成點(diǎn)”共有( )
A. 1個 B. 2個 C. 3個 D. 4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知圓C的圓心C( , ),半徑r= .
(1)求圓C的極坐標(biāo)方程;
(2)若α∈[0, ),直線l的參數(shù)方程為 (t為參數(shù)),直線l交圓C于A、B兩點(diǎn),求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓O的兩弦AB和CD交于點(diǎn)E,作EF∥CB,并且交AD的延長線于點(diǎn)F,F(xiàn)G切圓O于點(diǎn)G.
(1)求證:△DEF∽△EFA;
(2)如果FG=1,求EF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間[﹣ , ]上的函數(shù)f(x)=1+sinxcos2x,在x=θ時取得最小值,則sinθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩坐標(biāo)系取相同的單位長度,曲線C2的極坐標(biāo)方程為ρ=﹣2sin(θ+ ).
(1)把曲線C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求曲線C1與C2的交點(diǎn)M(ρ1 , θ1)的極坐標(biāo),其中ρ1≤0,0≤θ1<2π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 + =1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點(diǎn),F(xiàn)到拋物線的準(zhǔn)線l的距離為 .
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設(shè)l上兩點(diǎn)P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點(diǎn)B(B異于A),直線BQ與x軸相交于點(diǎn)D.若△APD的面積為 ,求直線AP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F,H分別是正方體ABCD-A1B1C1D1的棱CC1,AA1的中點(diǎn),棱長為,
(1)求證:平面BDF∥平面B1D1H.
(2)求正方體外接球的表面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com