精英家教網 > 高中數學 > 題目詳情
已知點P是橢圓
x2
16
+
y2
12
=1(y≠0)
上的動點,F1,F2為橢圓的兩個焦點,O是坐標原點,若M是∠F1PF2平分線上的一點,且F1M⊥MP,則OM的取值范圍是
[0,2)
[0,2)
分析:利用M是∠F1PF2平分線上的一點,且F1M⊥MP,判斷OM是三角形F1F2N的中位線,把OM用PF1,PF2表示,再利用橢圓的焦半徑公式,轉化為用橢圓上點的橫坐標表示,借助橢圓的范圍即可求出OM的范圍
解答:解:如圖,延長PF2,F1M,交與N點,∵PM是∠F1PF2平分線,且F1M⊥MP,
∴|PN|=|PF1|,M為F1F2中點,
連接OM,∵O為F1F2中點,M為F1F2中點
∴|OM|=
1
2
|F2N|=
1
2
||PN|-|PF2||=
1
2
||PF1|-|PF2||
∵在橢圓
x2
16
+
y2
12
=1(y≠0)
中,設P點坐標為(x0,y0
則|PF1|=a+ex0,|PF2|=a-ex0
∴||PF1|-|PF2||=|a+ex0+a-ex0|=|2ex0|=|x0|
∵P點在橢圓
x2
16
+
y2
12
=1(y≠0)
上,∴|x0|∈[0,4],
又∵當|x0|=4時,F1M⊥MP不成立,∴|x0|∈[0,4)
∴|OM|∈[0,2)
故答案為[0,2)
點評:本題主要考查了橢圓的焦半徑公式在求范圍中的應用,做題時要善于發(fā)現規(guī)律,把所求問題轉化為熟悉的知識.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點F是橢圓
x2
1+a2
+y2=1(a>0)
右焦點,點M(m,0)、N(0,n)分別是x軸、y軸上的動點,且滿足
MN
NF
=0
,若點P滿足
OM
=2
ON
+
PO

(1)求P點的軌跡C的方程;
(2)設過點F任作一直線與點P的軌跡C交于A、B兩點,直線OA、OB與直線x=-a分別交于點S、T(其中O為坐標原點),試判斷
FS
FT
是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P是橢圓
x2
1+a2
+
y2
a2
=1與雙曲線
x2
1-a2
-
y2
a2
=1的交點,F1,F2
是橢圓焦點,則cos∠F1PF2=
0
0

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知點F是橢圓
x2
1+a2
+y2=1(a>0)
右焦點,點M(m,0)、N(0,n)分別是x軸、y軸上的動點,且滿足
MN
NF
=0
,若點P滿足
OM
=2
ON
+
PO

(1)求P點的軌跡C的方程;
(2)設過點F任作一直線與點P的軌跡C交于A、B兩點,直線OA、OB與直線x=-a分別交于點S、T(其中O為坐標原點),試判斷
FS
FT
是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案