設(shè)拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的直線與拋物線相交于兩點(diǎn)且點(diǎn)恰為的中點(diǎn),則          
8

試題分析:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055133135583.png" style="vertical-align:middle;" />是的中點(diǎn),所以,
由點(diǎn)在拋物線上,所以
所以
所以答案填:8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(1)證明: 為定值;
(2)若△POM的面積為,求向量的夾角;
(3)證明直線PQ恒過一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,離心率e=
3
,一條準(zhǔn)線的方程為3x-
6
=0
,求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)動(dòng)圓與定圓相內(nèi)切,且與定直線相切,則此動(dòng)圓的圓心的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線.命題p: 直線l1:與拋物線C有公共點(diǎn).命題q: 直線l2:被拋物線C所截得的線段長(zhǎng)大于2.若為假, 為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線4kx-4y-k=0與拋物線y2=x交于A、B兩點(diǎn),若|AB|=4,則弦AB的中點(diǎn)到直線x+=0的距離等于(  )
A.      B.2          C.      D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•廣東)在平面直角坐標(biāo)系xOy中,直線l:x=﹣2交x軸于點(diǎn)A,設(shè)P是l上一點(diǎn),M是線段OP的垂直平分線上一點(diǎn),且滿足∠MPO=∠AOP.
(1)當(dāng)點(diǎn)P在l上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡E的方程;
(2)已知T(1,﹣1),設(shè)H是E上動(dòng)點(diǎn),求|HO|+|HT|的最小值,并給出此時(shí)點(diǎn)H的坐標(biāo);
(3)過點(diǎn)T(1,﹣1)且不平行與y軸的直線l1與軌跡E有且只有兩個(gè)不同的交點(diǎn),求直線l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與圓相切,則的值為
A.B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案