在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)P(0,1),曲線的方程為,若直線
與曲線相交于,兩點(diǎn),求的值.

1

解析試題分析:利用直線的參數(shù)方程的幾何意義,可簡(jiǎn)便解決有關(guān)線段乘積問題. 設(shè)直線的參數(shù)方程為為參數(shù),為傾斜角)設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)值分別為,.將代入,整理可得.所以
【解】設(shè)直線的參數(shù)方程為為參數(shù),為傾斜角)
設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)值分別為
代入,
整理可得.   5分(只要代入即可,沒有整理成一般形式也可以)
所以.                                     10分
考點(diǎn):直線的參數(shù)方程

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知極坐標(biāo)的極點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,且長度單位相同.圓的參數(shù)方程為為參數(shù)),點(diǎn)的極坐標(biāo)為().若點(diǎn)是圓上的任意一點(diǎn),兩點(diǎn)間距離的最小值為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的參數(shù)方程為為參數(shù)),焦點(diǎn)為,準(zhǔn)線為,為拋物線上一點(diǎn),,為垂足,如果直線的斜率為,那么         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(坐標(biāo)系與參數(shù)方程)圓C的極坐標(biāo)方程為,則圓心的極坐標(biāo)為_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程為.
(1)若直線過原點(diǎn),且被曲線C截得弦長最短,求此時(shí)直線的標(biāo)準(zhǔn)形式的參數(shù)方程;
(2)是曲線C上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點(diǎn)作傾斜角為的直線與曲線交于點(diǎn)
的最小值及相應(yīng)的的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點(diǎn)P作傾斜角為α的直線與曲線x2+2y2=1交于點(diǎn)M、N,求|PM|·|PN|的最小值及相應(yīng)的α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓是否相交,若相交,請(qǐng)求出公共弦的長;若不相交,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,若l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點(diǎn),求常數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案