用反證法證明“若a,b,c<3,則a,b,c中至少有一個小于1”時,“假設(shè)”應(yīng)為

A.假設(shè)a,b,c至少有一個大于1               B.假設(shè)a,b,c都大于1

C.假設(shè)a,b,c至少有兩個大于1               D.假設(shè)a,b,c都不小于1

 

【答案】

D

【解析】

試題分析:“a,b,c中至少有一個小于1”的反面是“假設(shè)a,b,c都不小于1”,故選D。

考點(diǎn):反證法

點(diǎn)評:本題結(jié)合角的比較考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.

反證法的步驟是:

(1)假設(shè)結(jié)論不成立;

(2)從假設(shè)出發(fā)推出矛盾;

(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“若a,b,c都是正數(shù),則a+
1
b
,b+
1
c
,c+
1
a
三數(shù)中至少有一個不小于2”,提出的假設(shè)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設(shè)的內(nèi)容是
a、b都不能被2整除
a、b都不能被2整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:a5+b5≥a2b3+a3b2,(a,b∈R+);
(2)用反證法證明:若a,b,c均為實(shí)數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
c=z2-2x+
π
6
,求證a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明.若a、b、c均為實(shí)數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a、b、c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“若a>b,則
3a
3b
”時,反設(shè)正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案