【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:為參數(shù)),,為直線上距離為的兩動(dòng)點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn)且不在直線上.

1)求曲線的普通方程及直線的直角坐標(biāo)方程.

2)求面積的最大值.

【答案】(1)直線的直角坐標(biāo)方程為,曲線的普通方程為(2)

【解析】

1)直線的極坐標(biāo)方程利用兩角差的余弦公式展開,再利用公式,將方程化成普通方程形式;對(duì)曲線的參數(shù)進(jìn)行消參,從而得到普通方程;

2)設(shè)點(diǎn),將點(diǎn)到直線的距離轉(zhuǎn)化為三角函數(shù)的值域問題.

1)直線的極坐標(biāo)方程化成,

直線的直角坐標(biāo)方程為,

曲線的參數(shù)方程化成:.

平方相加得,即

2)設(shè)點(diǎn),則到直線的距離為:

,

當(dāng)時(shí),,

設(shè)的面積為,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會(huì)認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測(cè)定遺址年齡的過程中利用了放射性物質(zhì)因衰變而減少這一規(guī)律.已知樣本中碳的質(zhì)量隨時(shí)間(單位:年)的衰變規(guī)律滿足表示碳原有的質(zhì)量),則經(jīng)過年后,碳的質(zhì)量變?yōu)樵瓉淼?/span>________;經(jīng)過測(cè)定,良渚古城遺址文物樣本中碳的質(zhì)量是原來的,據(jù)此推測(cè)良渚古城存在的時(shí)期距今約在________年到年之間.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形中,兩腰,底邊,,的三等分點(diǎn),的中點(diǎn).分別沿,將四邊形折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).

1)證明:平面.

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求的單調(diào)區(qū)間;

(2)求函數(shù)在上的最值;

(3)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的圖象有且僅有一個(gè)交點(diǎn),的值(其中表示不超過的最大整數(shù),.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值劃分等級(jí)及產(chǎn)品售價(jià)如下表:

質(zhì)量指標(biāo)值m

產(chǎn)品等級(jí)

等品

二等品

三等品

售價(jià)(每件)

160

140

120

從該企業(yè)生產(chǎn)的A產(chǎn)品中抽取100件作為樣本,檢測(cè)其質(zhì)量指標(biāo)值,得到下圖的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,求A產(chǎn)品質(zhì)量指標(biāo)值的中位數(shù);

2)用樣本頻率估計(jì)總體概率.現(xiàn)有一名顧客隨機(jī)購買兩件A產(chǎn)品,設(shè)其支付的費(fèi)用為X元,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線),直線,交于P、Q兩點(diǎn),P關(guān)于y軸的對(duì)稱點(diǎn),直線y軸交于點(diǎn);

1)若點(diǎn)的一個(gè)焦點(diǎn),求的漸近線方程;

2)若,點(diǎn)P的坐標(biāo)為,且,求k的值;

3)若,求n關(guān)于b的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,,設(shè)的內(nèi)切圓分別與邊相切于點(diǎn),已知,記動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)的直線與軸正半軸交于點(diǎn),與曲線E交于點(diǎn)軸,過的另一直線與曲線交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案