【題目】如圖,在長(zhǎng)方體中,,,為的中點(diǎn)
(1)在所給圖中畫出平面與平面的交線(不必說明理由)
(2)證明:平面
(3)求平面與平面所成銳二面角的余弦值
【答案】(1)見解析;(2)見證明;(3)
【解析】
(1)連接交于,即可得到平面與平面的交線;
(2)根據(jù)線面平行的判定定理即可證明:平面;
(3)建立坐標(biāo)系,求出平面的法向量,利用向量法進(jìn)行求解.
(1)連接交于,連接
則直線即為平面與平面的交線
(2)證明:∵分別是的中點(diǎn)
∴MEB
又∵平面,平面
∴ 平面
(3)解:以為坐標(biāo)原點(diǎn),所在直線分別為軸軸軸,建立空間直角坐標(biāo)系
因?yàn)?/span>,
所以
所以
設(shè)平面的法向量
所以從而有
即 不妨令
得到平面的一個(gè)法向量(1,0,2)
同理可求得平面的一個(gè)法向量(-1,2,2)
因?yàn)?/span>
所以平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則方程恰有2個(gè)不同的實(shí)根,實(shí)數(shù)取值范圍__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系x-O-y中,已知曲線E:(t為參數(shù))
(1)在極坐標(biāo)系O-x中,若A、B、C為E上按逆時(shí)針排列的三個(gè)點(diǎn),△ABC為正三角形,其中A點(diǎn)的極角θ=,求B、C兩點(diǎn)的極坐標(biāo);
(2)在直角坐標(biāo)系x-O-y中,已知?jiǎng)狱c(diǎn)P,Q都在曲線E上,對(duì)應(yīng)參數(shù)分別為t=α與t=2α (0<α<2π),M為PQ的中點(diǎn),求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機(jī)抽取100名學(xué)生,進(jìn)行一次海洋知識(shí)測(cè)試,按測(cè)試成績(jī)(假設(shè)考試成績(jī)均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測(cè)試成績(jī)?cè)赱80,85)內(nèi)的頻率;
(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識(shí)宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機(jī)選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊(duì),求第四組至少有1名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)傳統(tǒng)文化,某市舉辦了“高中生詩詞大賽”,現(xiàn)從全市參加比賽的學(xué)生中隨機(jī)抽取人的成績(jī)進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,其中成績(jī)的分組區(qū)間為,,,.
(1)求頻率分布直方圖中的值;
(2)在所抽取的名學(xué)生中,用分層抽樣的方法在成績(jī)?yōu)?/span>的學(xué)生中抽取了一個(gè)容量為的樣本,再從該樣本中任意抽取人,求人的成績(jī)均在區(qū)間內(nèi)的概率;
(3)若該市有名高中生參賽,根據(jù)此次統(tǒng)計(jì)結(jié)果,試估算成績(jī)?cè)趨^(qū)間內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對(duì)于其定義域內(nèi)的任何一個(gè)自變量,都有函數(shù)值,則稱函數(shù)在上封閉.
(1)若下列函數(shù):,的定義域?yàn)?/span>,試判斷其中哪些在上封閉,并說明理由.
(2)若函數(shù)的定義域?yàn)?/span>,是否存在實(shí)數(shù),使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請(qǐng)說明理由.
(3)已知函數(shù)在其定義域上封閉,且單調(diào)遞增,若且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
(Ⅱ)求在區(qū)間上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com