【題目】如圖,在四棱錐中,底面為菱形,,,,,點為的中點.
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)求出和的數(shù)量關(guān)系,根據(jù)勾股定理可證,又是正三角形,所以,根據(jù)直線與平面垂直的判定定理,可證平面;
(2)建立空間直角坐標系,求出兩平面的法向量所成的余弦值,從而可以求出平面與平面所成二面角的正弦值.
(1)證明:連結(jié),,因為底面為菱形,,
故,又為的中點,故.
在中,,為的中點,所以.
設(shè),則,,
因為,
所以.(也可通過來證明),
又因為,平面,平面,
所以平面;
(2)因為,,
,
所以平面,又平面,所以.
由(1)得平面,又平面,故有,又由,
所以,,所在的直線兩兩互相垂直.
故以為坐標原點,以,,所在直線為軸,軸,軸如圖建系.
設(shè),則,,,.
所以,,,
由(1)知平面,
故可以取與平行的向量作為平面的法向量.
設(shè)平面的法向量為,則,
令,所以.
設(shè)平面與平面所成二面角為,而
則,所以平面與平面所成二面角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】汽車智能輔助駕駛已得到廣泛應用,其自動剎車的工作原理是用雷達測出車輛與前方障礙物之間的距離(并結(jié)合車速轉(zhuǎn)化為所需時間),當此距離等于報警距離時就開始報警提醒,等于危險距離時就自動剎車,某種算法(如下圖所示)將報警時間劃分為4段,分別為準備時間、人的反應時間、系統(tǒng)反應時間、制動時間,相應的距離分別為、、、,當車速為(米/秒),且時,通過大數(shù)據(jù)統(tǒng)計分析得到下表(其中系數(shù)隨地面濕滑成都等路面情況而變化,).
階段 | 0、準備 | 1、人的反應 | 2、系統(tǒng)反應 | 3、制動 |
時間 | 秒 | 秒 | ||
距離 | 米 | 米 |
(1)請寫出報警距離(米)與車速(米/秒)之間的函數(shù)關(guān)系式,并求時,若汽車達到報警距離時人和系統(tǒng)均不采取任何制動措施,仍以此速度行駛,則汽車撞上固定障礙物的最短時間(精確到0.1秒);
(2)若要求汽車不論在何種路面情況下行駛,報警距離均小于80米,則汽車的行駛速度應限制在多少米/秒以下?合多少千米/小時?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標原點,則關(guān)于函數(shù)有下述四個結(jié)論:
①的最小正周期為 ②若的最大值為2,則
③在有兩個零點 ④在區(qū)間上單調(diào)
其中所有正確結(jié)論的標號是( )
A.①③④B.①②④C.②④D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為,點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,且傾斜角為.
(1)寫出曲線的直角坐標方程以及點的直角坐標;
(2)設(shè)直線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象向右平移個單位長度,所得圖象對應的函數(shù)為.
(1)求函數(shù)的表達式及其周期;
(2)求函數(shù)在上的對稱軸、對稱中心及其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標變?yōu)樵瓉淼?/span>,得到曲線.
(1)求曲線的普通方程;
(2)過點且傾斜角為的直線與曲線交于兩點,求取得最小值時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知向量,設(shè),向量.
(1)若,求向量與的夾角;
(2)若 對任意實數(shù)都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.
(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com