【題目】如圖,在四棱錐中,底面為菱形,,,,點的中點.

1)求證:平面

2)求平面與平面所成二面角的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)求出的數(shù)量關(guān)系,根據(jù)勾股定理可證,又是正三角形,所以,根據(jù)直線與平面垂直的判定定理,可證平面;

2)建立空間直角坐標系,求出兩平面的法向量所成的余弦值,從而可以求出平面與平面所成二面角的正弦值.

1)證明:連結(jié),,因為底面為菱形,,

,又的中點,故.

中,的中點,所以.

設(shè),則,

因為,

所以.(也可通過來證明),

又因為,平面,平面

所以平面;

2)因為,

所以平面,又平面,所以.

由(1)得平面,又平面,故有,又由

所以,所在的直線兩兩互相垂直.

故以為坐標原點,以,所在直線為軸,軸,軸如圖建系.

設(shè),則,,,.

所以,,

由(1)知平面,

故可以取與平行的向量作為平面的法向量.

設(shè)平面的法向量為,則,

,所以.

設(shè)平面與平面所成二面角為,而

,所以平面與平面所成二面角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】汽車智能輔助駕駛已得到廣泛應用,其自動剎車的工作原理是用雷達測出車輛與前方障礙物之間的距離(并結(jié)合車速轉(zhuǎn)化為所需時間),當此距離等于報警距離時就開始報警提醒,等于危險距離時就自動剎車,某種算法(如下圖所示)將報警時間劃分為4段,分別為準備時間、人的反應時間、系統(tǒng)反應時間、制動時間,相應的距離分別為、、,當車速為(米/秒),且時,通過大數(shù)據(jù)統(tǒng)計分析得到下表(其中系數(shù)隨地面濕滑成都等路面情況而變化,.

階段

0、準備

1、人的反應

2、系統(tǒng)反應

3、制動

時間

距離

1)請寫出報警距離(米)與車速(米/秒)之間的函數(shù)關(guān)系式,并求時,若汽車達到報警距離時人和系統(tǒng)均不采取任何制動措施,仍以此速度行駛,則汽車撞上固定障礙物的最短時間(精確到0.1秒);

2)若要求汽車不論在何種路面情況下行駛,報警距離均小于80米,則汽車的行駛速度應限制在多少米/秒以下?合多少千米/小時?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度得到的圖象,若的對稱中心為坐標原點,則關(guān)于函數(shù)有下述四個結(jié)論:

的最小正周期為 ②若的最大值為2,則

有兩個零點 在區(qū)間上單調(diào)

其中所有正確結(jié)論的標號是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,且傾斜角為.

(1)寫出曲線的直角坐標方程以及點的直角坐標;

(2)設(shè)直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象向右平移個單位長度,所得圖象對應的函數(shù)為.

(1)求函數(shù)的表達式及其周期;

(2)求函數(shù)上的對稱軸、對稱中心及其單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標變?yōu)樵瓉淼?/span>,得到曲線.

1)求曲線的普通方程;

2)過點且傾斜角為的直線與曲線交于兩點,求取得最小值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知向量,設(shè),向量

(1)若,求向量的夾角;

(2)若 對任意實數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.

1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.

2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.

i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);

ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.

可能用到的參考數(shù)據(jù):取,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長均為的三棱柱中,平面平面,,的交點.

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案