若曲線存在垂直于軸的切線,則實(shí)數(shù)的取值范圍是 .
應(yīng)填或是
由題意該函數(shù)的定義域,由。因?yàn)榇嬖诖怪庇?sub>軸的切線,故此時(shí)斜率為,問(wèn)題轉(zhuǎn)化為范圍內(nèi)導(dǎo)函數(shù)存在零點(diǎn)。
解法1 (圖像法)再將之轉(zhuǎn)化為與存在交點(diǎn)。當(dāng)不符合題意,當(dāng)時(shí),如圖1,數(shù)形結(jié)合可得顯然沒(méi)有交點(diǎn),當(dāng)如圖2,此時(shí)正好有一個(gè)交點(diǎn),故有。
解法2 (分離變量法)上述也可等價(jià)于方程在內(nèi)有解,顯然可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在等腰直角三角形中,斜邊,過(guò)點(diǎn)作的垂線,垂足為;過(guò)點(diǎn)作的垂線,垂足為;過(guò)點(diǎn)作的垂線,垂足為;….依此類推,設(shè),,,…,,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列和滿足, , .
(1) 當(dāng)時(shí),求證: 對(duì)于任意的實(shí)數(shù),一定不是等差數(shù)列;
(2) 當(dāng)時(shí),試判斷是否為等比數(shù)列;
(3) 設(shè)為數(shù)列的前項(xiàng)和,在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得對(duì)任意的正整數(shù),都有?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)是已知平面上所有向量的集合,對(duì)于映射,記的象為。若映射滿足:對(duì)所有及任意實(shí)數(shù)都有,則稱為平面上的線性變換,F(xiàn)有下列命題:
①設(shè)是平面上的線性變換,,則
②若是平面上的單位向量,對(duì),則是平面上的線性變換;
③對(duì),則是平面上的線性變換;
④設(shè)是平面上的線性變換,,則對(duì)任意實(shí)數(shù)均有。
其中的真命題是 (寫(xiě)出所有真命題的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)在兩個(gè)極值點(diǎn),且
(I)求滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫(huà)出滿足這些條件的點(diǎn)的區(qū)域;
(II)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是。
(I)求函數(shù)的解析式;
(II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com