若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則
C
先求出左焦點(diǎn)坐標(biāo)F,設(shè)P(x0,y0),根據(jù)P(x0,y0)在橢圓上可得到x0、y0的關(guān)系式,表示出向量 ,根據(jù)數(shù)量積的運(yùn)算將x0、y0的關(guān)系式代入組成二次函數(shù)進(jìn)而可確定答案.
解答:解:由題意,F(xiàn)(-1,0),設(shè)點(diǎn)P(x0,y0),則有,解得y02=3(1-),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823165848559315.png" style="vertical-align:middle;" />=(x0+1,y0),=(x0,y0),
所以?=x0(x0+1)+y02=?=x0(x0+1)+3(1-)=+x0+3,
此二次函數(shù)對應(yīng)的拋物線的對稱軸為x0=-2,
因?yàn)?2≤x0≤2,所以當(dāng)x0=2時(shí),?取得最大值,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知點(diǎn)P(-1,)是橢圓E)上一點(diǎn),F1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),(0<λ<4,且λ≠2).求證:直線AB的斜率等于橢圓E的離心率;
(3)在(2)的條件下,當(dāng)△PAB面積取得最大值時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分12分)
已知點(diǎn)P(4,4),圓C與橢圓E
有一個(gè)公共點(diǎn)A(3,1),F1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
w.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的兩個(gè)焦點(diǎn),過且與坐標(biāo)軸不平行的直線與橢圓相交于M,N兩點(diǎn),如果的周長等于8.
(I)求橢圓的方程;
(Ⅱ)若過點(diǎn)(1,0)的直線與橢圓交于不同兩點(diǎn)P、Q,試問在軸上是否存在定點(diǎn)E(,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn),則△ABF2的周長是
A.12 B.24C.22D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的離心率為                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓,A(2,0)為橢圓與X軸的一個(gè)交點(diǎn),過原點(diǎn)O的直線交橢圓于B、C兩點(diǎn),且,
(1)  求此橢圓的方程;
(2)  若P(x,y)為橢圓上的點(diǎn)且P的橫坐標(biāo)X≠±1,試判斷是否為定值?若是定值,求出該定值;若不是定值,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的兩焦點(diǎn)分別為F1、F2,過F1作直線交橢圓于A、B兩點(diǎn),
則△ABF2周長為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓的頂點(diǎn)為焦點(diǎn),以橢圓的焦點(diǎn)為頂點(diǎn)的雙曲線方程為

查看答案和解析>>

同步練習(xí)冊答案