已知全集I={1,2,3,4,5,6},集合M={3,4,5},N={1,2,3,4},則如圖中陰影部分表示的集合為(  )
A、{1,2}
B、{1,2,6}
C、{1,2,3,4,5}
D、{1,2,3,4,6}
考點(diǎn):Venn圖表達(dá)集合的關(guān)系及運(yùn)算
專題:集合
分析:先確定陰影部分對(duì)應(yīng)的集合為(∁UM)∩N,然后利用集合關(guān)系確定集合元素即可.
解答: 解:陰影部分對(duì)應(yīng)的集合為(∁UM)∩N,
∵M(jìn)={3,4,5},N={1,2,3,4},
∴∁UM={1,2,6},
∴(∁UM)∩N={1,2},
故選:A
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,利用Venn圖,確定陰影部分的集合關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
3x2+3
,x∈[0,2].
(1)求使方程f(x)-m=0(m∈R)存在實(shí)數(shù)解時(shí),實(shí)數(shù)m的取值范圍;
(2)設(shè)a≠0,函數(shù)g(x)=
1
3
ax3-a2x
,x∈[0,2],若對(duì)任意x1∈[0,2],總存在x0∈[0,2],使f(x1)-g(x0)=0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式bx+c+9lnx≤x2對(duì)任意的x∈(0,+∞),b∈(0,3)恒成立,則實(shí)數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某個(gè)四面體的三視圖,若在該四面體的外接球內(nèi)任取一點(diǎn),則點(diǎn)落在四面體內(nèi)的概率為( 。
A、
9
13π
B、
1
13π
C、
9
13
169π
D、
13
169π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinx在區(qū)間(0,5π)上可找到n(n≥2)個(gè)不同數(shù)x1,x2,…,xn,使得:
f(x1)
x1
=
f(x2)
x2
=…=
f(xn)
xn
,則自然數(shù)n的所有可能取值集合為(  )
A、{2,3}
B、{2,3,4}
C、{2,3,4,5}
D、{3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-1)=1,對(duì)任意x∈R,f′(x)>3,則f(x)>3x+4的解集為(  )
A、(-1,1)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2x=3y=a,且 
1
x
+
1
y
=2,則a的值為( 。
A、
6
B、6
C、±
6
D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}的通項(xiàng)公式分別為an=3n-19,bn=2n.將{an}與{bn}中的公共項(xiàng)按照從小到大的順序排列構(gòu)成一個(gè)新數(shù)列記為{cn}.
(1)試寫出c1,c2,c3,c4的值,并由此歸納數(shù)列{cn}的通項(xiàng)公式;
(2)證明你在(1)所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx+m,m∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤0在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明:對(duì)任意的0<a<b,
f(b)-f(a)
b-a
1
a
-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案