【題目】如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花.若BC=a,∠ABC=,設(shè)△ABC的面積為S1,正方形的面積為S2.
(1)用a,表示S1和S2;
(2)當(dāng)a固定,變化時(shí),求取最小值時(shí)的角.
【答案】(1)S1a2sinθcosθ;S2=;(2)當(dāng)θ時(shí),的值最小,最小值為.
【解析】
(1)據(jù)題三角形ABC為直角三角形,利用三角函數(shù)分別求出AC和AB,得出三角形ABC的面積S1;
設(shè)正方形PQRS的邊長(zhǎng)為x,利用三角函數(shù)分別表示出BQ和RC,由BQ+QR+RC=a列出方程求出x,算出S2;
(2)化簡(jiǎn)比值,設(shè)t=sin2θ來(lái)化簡(jiǎn)求出S1與S2的比值,利用三角函數(shù)的增減性求出比值的最小值以及對(duì)應(yīng)此時(shí)的θ.
(1)在Rt△ABC中,AB=acosθ,AC=asinθ,
所以S1ABACa2sinθcosθ;
設(shè)正方形的邊長(zhǎng)為x則BP,AP=xcosθ,
由BP+AP=AB,得xcosθ=acosθ,
解得x;
所以S2=x2;
(2)
sin2θ+1,
令t=sin2θ,因?yàn)?/span> 0<θ,
所以0<2θ<π,則t=sin2θ∈(0,1],
所以t+1;
設(shè)g(t)t+1,
所以函數(shù)g(t)在(0,1]上遞減,
因此當(dāng)t=1時(shí)g(t)有最小值g(t)min=g(1)1+1,
此時(shí)sin2θ=1,解得θ;所以當(dāng)θ時(shí),的值最小,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,,不在軸上的動(dòng)點(diǎn)滿足于點(diǎn)為的中點(diǎn)。
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)曲線與軸正半軸的交點(diǎn)為,斜率為的直線交于兩點(diǎn),記直線的斜率分別為,試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中國(guó)詩(shī)詞大會(huì)》節(jié)目組決定把《將進(jìn)酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩(shī)詞排在后六場(chǎng),并要求《將進(jìn)酒》與《望岳》相鄰,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場(chǎng)開(kāi)場(chǎng)詩(shī)詞的排法有_____________種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;
(Ⅱ)過(guò)點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),定義非零向量,的“相伴函數(shù)”為,
向量,稱(chēng)為函數(shù)的“相伴向量”.記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為.
(1)設(shè)函數(shù),求證:;
(2)記,的“相伴函數(shù)”為,若函數(shù),,與直線有且僅有四個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn),滿足,向量的“相伴函數(shù)”在處取得最大值.當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,.
(1)證明:點(diǎn)在底面上的射影必在直線上;
(2)若二面角的大小為,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某租賃公司擁有汽車(chē)100輛,當(dāng)每輛車(chē)的月租金為3200元時(shí),可全部租出。當(dāng)每輛車(chē)的月租金每增加50元時(shí)(租金增減為50元的整數(shù)倍),未租出的車(chē)將會(huì)增加一輛。租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元。
(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)設(shè)租金為(3200+50x)元/輛(x∈N),用x表示租賃公司的月收益y(單位:元)。
(3)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面 平面,四邊形為正方形,△為等邊三角形,是中點(diǎn),平面與棱交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(III)記四棱錐的體積為,四棱錐的體積為,直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com