分析 a1=1,an+1=an2+an>1,可得$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,于是$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2016}+1}$=1-$\frac{1}{{a}_{2017}}$∈(0,1).又$\frac{{a}_{n}}{{a}_{n}+1}$=1-$\frac{1}{{a}_{n}+1}$.可得$\frac{{a}_{1}}{{a}_{1}+1}$+$\frac{{a}_{2}}{{a}_{2}+1}$+…+$\frac{{a}_{2016}}{{a}_{2016}+1}$=2016-$(1-\frac{1}{{a}_{2017}})$.即可得出.
解答 解:∵a1=1,an+1=an2+an>1,∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,∴$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2016}+1}$=$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})$+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{2016}}-\frac{1}{{a}_{2017}})$=1-$\frac{1}{{a}_{2017}}$∈(0,1).
又$\frac{{a}_{n}}{{a}_{n}+1}$=1-$\frac{1}{{a}_{n}+1}$.
∴$\frac{{a}_{1}}{{a}_{1}+1}$+$\frac{{a}_{2}}{{a}_{2}+1}$+…+$\frac{{a}_{2016}}{{a}_{2016}+1}$=2016-$(1-\frac{1}{{a}_{2017}})$.
∴[$\frac{{a}_{1}}{{a}_{1}+1}$+$\frac{{a}_{2}}{{a}_{2}+1}$+…+$\frac{{a}_{2016}}{{a}_{2016}+1}$]=2015.
故答案為:2015.
點評 本題考查了數(shù)列遞推關(guān)系、“裂項求和”方法、取整函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20π | B. | 42π | C. | 52π | D. | 56π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -e | B. | -$\frac{1}{e}$ | C. | e | D. | $\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,2) | B. | (-1,2) | C. | (-∞,-1)∪[2,+∞) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com