【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.
【答案】(1)(2)見解析
【解析】(1)由題設(shè),得=1,①且=,②
由①、②解得a2=6,b2=3,故橢圓C的方程為=1.
(2)設(shè)直線MP的斜率為k,則直線MQ的斜率為-k,
假設(shè)∠PMQ為直角,則k·(-k)=-1,即k=±1.
若k=1,則直線MQ的方程為y+1=-(x+2),與橢圓C方程聯(lián)立,得x2+4x+4=0,
該方程有兩個(gè)相等的實(shí)數(shù)根-2,不合題意;
同理,若k=-1也不合題意.故∠PMQ不可能為直角.記P(x1,y1)、Q(x2,y2).
設(shè)直線MP的方程為y+1=k(x+2),與橢圓C的方程聯(lián)立,得(1+2k2)x2+(8k2-4k)x+8k2-8k-4=0,
則-2,x1是該方程的兩根,則-2x1=,即x1=.
設(shè)直線MQ的方程為y+1=-k(x+2),同理得x2=.
因y1+1=k(x1+2),y2+1=-k(x2+2),
故kPQ==1,
因此直線PQ的斜率為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=-x2+ax.
(1)若a=-2,求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)為R上的單調(diào)減函數(shù),
①求a的取值范圍;
②若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某果農(nóng)選取一片山地種植紅柚,收獲時(shí),該果農(nóng)隨機(jī)選取果樹20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的倍.
(1)求、的值;
(2)求樣本的平均數(shù);
(3)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,是上的一點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),,且直線與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)同時(shí)滿足:(1)對(duì)于定義域內(nèi)的任意,有;(2)對(duì)于定義域內(nèi)的任意,當(dāng)時(shí),有,則稱函數(shù)為“理想函數(shù)”.給出下列四個(gè)函數(shù):①;②;③;④.
其中是“理想函數(shù)”的序號(hào)是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓()的左頂點(diǎn),左焦點(diǎn)是線段的中點(diǎn),拋物線的準(zhǔn)線恰好過點(diǎn).
(1)求橢圓的方程;
(2)如圖所示,過點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn),若為線段的中點(diǎn),過作與直線垂直的直線,證明對(duì)于任意的(),直線過定點(diǎn),并求出此定點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com