【題目】如圖,在中, ,角的平分線交于點(diǎn),設(shè).(1)求;(2)若,求的長.
【答案】(1)(2)
【解析】試題分析:(1)由α為三角形BAD中的角,根據(jù)sinα的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,進(jìn)而利用二倍角的正弦函數(shù)公式求出sin∠BAC與cos∠BAC的值,即為sin2α與cos2α的值,sinC變形為,利用誘導(dǎo)公式,以及兩角和與差的正弦函數(shù)公式化簡后,將各自的值代入計算即可求出sinC的值;
(2)利用正弦定理列出關(guān)系式,將sinC與sin∠BAC的值代入得出,利用平面向量的數(shù)量積運(yùn)算法則化簡已知等式左邊,將表示出的AB代入求出BC的長,再利用正弦定理即可求出AC的長.
試題解析:
解:(1)∵, ,
∴,
則,
∴,
∴.
(2)由正弦定理,得,即,∴,
又,∴,由上兩式解得,
又由得,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為,且.
(Ⅰ)求此拋物線的方程;
(Ⅱ)過點(diǎn)做直線交拋物線于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時的解析式f(x)= ﹣ (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓
(1)若直線與圓相交于兩個不同點(diǎn),求的最小值;
(2)直線上是否存在點(diǎn),滿足經(jīng)過點(diǎn)有無數(shù)對互相垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)結(jié)論正確的個數(shù)為( )
①小趙、小錢、小孫、小李到4個景點(diǎn)旅游,每人只去一個景點(diǎn),設(shè)事件=“4個人去的景點(diǎn)不相同”,事件 “小趙獨(dú)自去一個景點(diǎn)”,則;
②設(shè)函數(shù)存在導(dǎo)數(shù)且滿足,則曲線在點(diǎn)處的切線斜率為-1;
③設(shè)隨機(jī)變量服從正態(tài)分布,若,則與的值分別為;
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合M={x|﹣2≤x≤2,N=y|0≤y≤2}.給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3萬元、2萬元,甲、乙產(chǎn)品都需要在兩種設(shè)備上加工,在每臺上加工1件甲所需工時分別是1、2,加工1件乙所需工時分別為2、1, 兩種設(shè)備每月有效使用臺時數(shù)分別為400和500,如何安排生產(chǎn)可使收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)討論函數(shù)在上的單調(diào)性;
(II)設(shè)函數(shù)存在兩個極值點(diǎn),并記作,若,求正數(shù)的取值范圍;
(III)求證:當(dāng)=1時, (其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com