在(
4x
+
6
3x
24的展開式中,x的指數(shù)為整數(shù)的項共有( 。
A、3項B、4項C、5項D、6項
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:利用二項展開式的通項公式求出第r+1項,令x的指數(shù)為整數(shù)求出r,得到指數(shù)是整數(shù)的項數(shù).
解答: 解:Tr+1=
C
r
24
x
24-r
4
6rx
-r
3
=6r
C
r
24
x
72-7r
12
,
當(dāng)r=0,12,24時,x的指數(shù)整數(shù),
故選:A.
點評:本題考查利用二項展開式的通項公式解決二項展開式的特定項問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

合肥一中第二十二屆校園文化藝術(shù)節(jié)在2014年12月開幕,在其中一個場館中,由吉他社,口琴社各表演兩個節(jié)目,國學(xué)社表演一個節(jié)目,要求同社團的節(jié)目不相鄰,節(jié)目單排法的種數(shù)是( 。
A、72B、60C、48D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列5,4
2
7
,3
4
7
,…的前n項和為Sn,則使得Sn最大的序號n的值為( 。
A、7B、8C、7或8D、8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)
2+bi
1+i
(b∈R)是純虛數(shù)(i是虛數(shù)單位),那么b的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
33x-2
,g(x)=
1
2x-3
,則函數(shù)f(x)•g(x)的定義域是( 。
A、[
2
3
,
3
2
B、(
3
2
,+∞)
C、[
2
3
,+∞)
D、(
2
3
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知對所有的有序正整數(shù)對(m,n)滿足下述條件:①f(m,1)=1;
②若n>m,f(m,n)=0;
③f(m+1,n)=n[f(m,n)+f(m,n-1)];
則f(2,2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為矩形,側(cè)面SAD為邊長2的正三角形,且面SAD⊥面ABCD.AB=
2
,E為AD中點;
(1)求證:BD⊥SC;
(2)求二面角E-SC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)當(dāng)x=θ時,函數(shù)f(x)=sinx-cosx取得最大值,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=an2+nan+α,首項a1=3.
(Ⅰ)當(dāng)n∈N*時,an≥2n恒成立,求α的取值范圍;
(Ⅱ)若α=-2,求證:
1
a1-2
+
1
a2-2
+…+
1
an-2
<2.

查看答案和解析>>

同步練習(xí)冊答案