【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-42)Rt的直角頂點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)Bx軸上.

(1)求直線AB的方程;

(2)求△OAB的外接圓的方程.

【答案】(1)2x-y+10=0.(2)x2+y2+5x=0.

【解析】

(1)利用可得的斜率,結(jié)合點(diǎn)斜式可求方程;

(2)先確定B(-5,0),結(jié)合直角三角形的特征可知△OAB的外接圓是以為直徑的圓,易求圓心和半徑得到方程.

:(1)∵點(diǎn)A(-4,2)的直角頂點(diǎn),

OAAB,又,

,

∴直線AB的方程為y-2=2(x+4),即2x-y+10=0.

(2)(1)B(-5,0),

∵點(diǎn)A(-4,2)的直角頂點(diǎn),

∴△OAB的外接圓是以中點(diǎn)為圓心, 為半徑的圓,

中點(diǎn)坐標(biāo)為,

∴所求外接圓方程是,即x2+y2+5x=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無(wú)價(jià)之寶.改革開放以來(lái),有的地方領(lǐng)導(dǎo)片面追求政績(jī),對(duì)森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時(shí)有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對(duì)甲、乙兩種樹苗各抽測(cè)了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:

(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;

(2)據(jù)莖葉圖,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹苗高度整齊情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角AB、C的對(duì)邊分別為a、b、c,且滿足b2=ac,cosB=

1)求+的值;

2)設(shè)=,求三邊a、b、c的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,且,平面,,點(diǎn)是線段上任意一點(diǎn).

(1)證明:平面平面

(2)若的最大值是,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,的中點(diǎn).將沿折起,使折起后平面平面,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示在四棱錐,底面為平行四邊形

∠ADC=45°,,的中點(diǎn),⊥平面,的中點(diǎn).

(1)證明:⊥平面;

(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份(年)

維護(hù)費(fèi)(萬(wàn)元)

已知.

(I)求表格中的值;

(II)從這年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有年多于萬(wàn)元的概率;

(Ⅲ)求關(guān)于的線性回歸方程;并據(jù)此預(yù)測(cè)第幾年開始平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用超過(guò)萬(wàn)元.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元.

若學(xué)生宿舍建筑為x層樓時(shí),該樓房綜合費(fèi)用為y萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和,寫出的表達(dá)式;

為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖:

(1)學(xué)校規(guī)定:成績(jī)不得低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯(cuò)誤率的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)優(yōu)異與教學(xué)方式有關(guān)?”

下面臨界值表僅供參考:

(參考方式:,其中

(2)現(xiàn)從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案