已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng),…的最小值記為Bn,dn=An-Bn.
(I)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n∈N*,),寫出d1,d2,d3,d4的值;
(II)設(shè)d為非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}為公差為d的等差數(shù)列;
(III)證明:若a1=2,dn=1(n=1,2,3…),則{an}的項(xiàng)只能是1或2,且有無窮多項(xiàng)為1.

(I) ,. (II)見解析 (III)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且.
⑴證明:數(shù)列是等比數(shù)列,并寫出通項(xiàng)公式;
⑵若對(duì)恒成立,求的最小值;
⑶若成等差數(shù)列,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和滿足:為常數(shù),且). 
(1)求的通項(xiàng)公式;
(2)設(shè),若數(shù)列為等比數(shù)列,求的值;
(3)在滿足條件(2)的情形下,設(shè),數(shù)列的前項(xiàng)和為 ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式>2 010的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,,
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),
(1)求的通項(xiàng)公式.
(2)記數(shù)列的前三項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有.函數(shù),數(shù)列的首項(xiàng)

(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令求證:是等比數(shù)列并求通項(xiàng)公式
(Ⅲ)令,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知數(shù)列為等比數(shù)列,且,該數(shù)列的各項(xiàng)都為正數(shù),求;(2)若等比數(shù)列的首項(xiàng),末項(xiàng),公比,求項(xiàng)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,求其第4項(xiàng)及前5項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案