方程x=數(shù)學公式 所表示的曲線是


  1. A.
    雙曲線
  2. B.
    橢圓
  3. C.
    雙曲線的一部分
  4. D.
    橢圓的一部分
C
分析:方程兩邊平方后可整理出雙曲線的方程,由于x的值只能取非負數(shù),推斷出方程表示的曲線為一個雙曲線的一部分.
解答:x=兩邊平方,可變?yōu)閥2-=1(x≥0),
表示的曲線為雙曲線的一部分;
故選C.
點評:本題主要考查了曲線與方程.解題的過程中注意x的范圍,注意數(shù)形結合的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,曲線段OMB是函數(shù)f(x)=x2(0<x<6)的圖象,BA⊥x軸于A,曲線段OMB上一點M(t,f(t))處的切線PQ交x軸于P,交線段AB于Q,
(1)試用t表示切線PQ的方程;
(2)試用t表示△QAP的面積g(t),若函數(shù)g(t)在[m,n]上單調(diào)遞減,試求出m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,曲線段OMB是函數(shù)?f(x)=?x2(0<x<6)的圖象,BAx軸于A點,曲線段OMB上一點M(t,f(t))的切線PQx軸于P點,交線段ABQ.

(1)試用t表示切線PQ的方程;

(2)試用t表示△QAP的面積g(t),若函數(shù)g(t)在(m,n)上單調(diào)遞減,試求出m的最小值;

(3)若SQAP∈[,64],試求出點P橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,曲線段OMB是函數(shù)f(x)=x2(0<x<6=的圖象,BAx軸于A,曲線段OMB上一點M(t,f(t))處的切線PQx軸于P,交線段ABQ,⑴試用t表示切線PQ的方程;⑵試用t表示出△QAP的面積g(t);若函數(shù)g(t)在(mn)上單調(diào)遞減,試求出m的最小值;⑶若SQAP∈[],試求出點P橫坐標的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:14.5 導數(shù)的綜合問題(解析版) 題型:解答題

如圖所示,曲線段OMB是函數(shù)f(x)=x2(0<x<6)的圖象,BA⊥x軸于A,曲線段OMB上一點M(t,f(t))處的切線PQ交x軸于P,交線段AB于Q,
(1)試用t表示切線PQ的方程;
(2)試用t表示△QAP的面積g(t),若函數(shù)g(t)在[m,n]上單調(diào)遞減,試求出m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,曲線段OMB是函數(shù)f(x)=x2(0<x<6)的圖象,BA⊥x軸于點A,曲線段OMB上一點M(t,f(t))處的切線PQ交x軸于點P,交線段AB于點Q.

(1)試用t表示切線PQ的方程;

(2)設△QAP的面積為g(t);若函數(shù)g(t)在(m,n)上單調(diào)遞減,試求出m的最小值;

(3)試求g(t)的取值范圍.

查看答案和解析>>

同步練習冊答案