【題目】設(shè)f(x)為奇函數(shù),且f(x)在(﹣∞,0)內(nèi)是增函數(shù),f(﹣2)=0,則xf(x)>0的解集為

【答案】(﹣∞,﹣2)∪(2,+∞)
【解析】解:不等式xf(x)>0等價為
∵f(x)為奇函數(shù)且在(﹣∞,0)內(nèi)是增函數(shù),f(﹣2)=0,
∴f(x)為奇函數(shù)且在(0,+∞)內(nèi)是增函數(shù),f(2)=0,
但當x>0時,不等式f(x)>0等價為f(x)>f(2),即x>2,
當x<0時,不等式f(x)<0等價為f(x)<f(﹣2),即x<﹣2,
綜上x>2或x<﹣2,
故不等式xf(x)>0的解集是(﹣∞,﹣2)∪(2,+∞),
所以答案是:(﹣∞,﹣2)∪(2,+∞).
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月產(chǎn)量如表(單位:輛):

轎車A

轎車B

轎車C

舒適型

100

150

z

標準型

300

450

600

按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛。

(1)求z的值;

(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本。將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形, .

(1)求證:直線直線;

(2)若直線與底面成的角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)已知冪函數(shù)f(x)=(﹣2m2+m+2)x2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x1=3(x>1),求x2﹣x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣ax+3,且對任意的實數(shù)x都有f(4﹣x)=f(x)成立.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的值域;
(3)要得到函數(shù)y=x2的圖象只需要將二次函數(shù)y=f(x)的圖象做怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運會中國代表團獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):

時間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點圖如圖:

由圖可以看出,金牌數(shù)之和與時間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測到第32屆奧運會時中國代表團獲得的金牌數(shù)之和為多少?

附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設(shè)函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,頂點為,且

(1)求橢圓的方程;

(2)是橢圓上除頂點外的任意點,直線軸于點,直線于點.設(shè)的斜率為, 的斜率為,試問是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線方程為.

(1)求該雙曲線的實軸長、虛軸長、離心率;

(2)若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程.

查看答案和解析>>

同步練習(xí)冊答案