設(shè)數(shù)列{an}首項(xiàng)a1=-7,且滿足an+1=an+2(n∈N*),則a1+a2++a17=__________________.
153
由題意an+1=an+2(n∈N*),∴{an}是一個(gè)首項(xiàng)a1=-7,公差d=2的等差數(shù)列.
∴a1+a2+…+a17=17×(-7)+=153.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}中,a1=84,a2=80,則使an≥0且an+1<0的n為(   )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.數(shù)列{an}的前n項(xiàng)和Sn=100n-n2(n∈N*).
(1){an}是什么數(shù)列?
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,an=lg,判斷該數(shù)列是否為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(a、b為常數(shù),a≠0)滿足f(2)=1,且f(x)=x有唯一解。如記xn=f(xn-1),且x1=1,n∈N*,求xn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列是等差數(shù)列,,其中,
求通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

Sn是數(shù)列{an}的前n項(xiàng)和,an=,求Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(湖北部分高中·2010屆高三聯(lián)考(文)){an}是等差數(shù)列,且a1a4a7=45,a2a5a8=39,則a3a6a9的值是      

查看答案和解析>>

同步練習(xí)冊答案