【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
為定義在上的“局部奇函數(shù)”;
曲線與軸交于不同的兩點(diǎn);
若為假命題, 為真命題,求的取值范圍.
【答案】或或
【解析】試題分析:首先根據(jù)已知條件并結(jié)合換元法和二次函數(shù)在區(qū)間上的最值以及一元二次方程根的情況分別求出命題, 為真命題時(shí)所滿足的的取值范圍,然后根據(jù)已知條件可知命題, 中一個(gè)為真命題,一個(gè)為假命題,并利用補(bǔ)集的思想求出的取值范圍.
試題解析:若p為真,則由于為的局部奇函數(shù),從而,即在上有解,令,則,又在上遞減,在上遞增,從而,得,故有. 若為真,則有,得或. 又由“”為假命題,“”為真命題,則與一真一假;若真假,則,得無(wú)交集;若假真,則,得或或,綜上知的取值范圍為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率,左、右焦點(diǎn)分別為, ,點(diǎn)滿足: 在線段的中垂線上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若斜率為()的直線與軸、橢圓順次相交于點(diǎn)、、,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 “一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱.某市為了了解人們對(duì)“一帶一路”的認(rèn)知程度,對(duì)不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識(shí)競(jìng)賽,滿分100分(90分及以上為認(rèn)知程度高),現(xiàn)從參賽者中抽取了人,按年齡分成5組(第一組:,第二組,第三組:,第四組:,第五組:),得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1-5組,從這5個(gè)按年齡分的組合5個(gè)按職業(yè)分的組中每組各選派1人參加知識(shí)競(jìng)賽代表相應(yīng)組的成績(jī),年齡組中1-5組的成績(jī)分別為93,96,97,94,90,職業(yè)組中1-5組的成績(jī)分別為93,98,94,95,90.
(i)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;
(ii)以上述數(shù)據(jù)為依據(jù),評(píng)價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對(duì)“一帶一路”的認(rèn)知程度,并談?wù)勀愕母邢?/span>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中, 是線段上一點(diǎn).
點(diǎn).
(1)確定的位置,使得平面平面;
(2)若平面,設(shè)二面角的大小為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)其中為常數(shù).
(1)當(dāng)函數(shù)的圖象在點(diǎn)處的切線的斜率為1時(shí),求函數(shù)在上的最小值; (2)若函數(shù)在區(qū)間上既有極大值又有極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓右焦點(diǎn)是拋物線的焦點(diǎn),是與在第一象限內(nèi)的交點(diǎn),且.
(1)求的方程;
(2)已知菱形的頂點(diǎn)在橢圓上,頂點(diǎn)在直線上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,則下面結(jié)論正確的是 ( )
A. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍, 縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度, 得到曲線
B. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍 ,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍 ,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知點(diǎn),圓
(I)在極坐標(biāo)系中,以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,取相同的長(zhǎng)度單位,求圓的直角坐標(biāo)方程;
(II)求點(diǎn)到圓圓心的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com