【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

為定義在上的“局部奇函數(shù)”;

曲線軸交于不同的兩點(diǎn);

為假命題, 為真命題,求的取值范圍.

【答案】

【解析】試題分析:首先根據(jù)已知條件并結(jié)合換元法和二次函數(shù)在區(qū)間上的最值以及一元二次方程根的情況分別求出命題, 為真命題時(shí)所滿足的的取值范圍,然后根據(jù)已知條件可知命題中一個(gè)為真命題,一個(gè)為假命題,并利用補(bǔ)集的思想求出的取值范圍.

試題解析:若p為真,則由于的局部奇函數(shù),從而,即上有解,令,則,又上遞減,在上遞增,從而,得,故有. 為真,則有,得. 又由為假命題,為真命題,則一真一假;若假,則,得無(wú)交集;若真,則,得,綜上知的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率,左、右焦點(diǎn)分別為 ,點(diǎn)滿足: 在線段的中垂線上.

(Ⅰ)求橢圓的方程;

(Ⅱ)若斜率為)的直線軸、橢圓順次相交于點(diǎn)、、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 “一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱某市為了了解人們對(duì)“一帶一路”的認(rèn)知程度,對(duì)不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識(shí)競(jìng)賽,滿分100分(90分及以上為認(rèn)知程度高),現(xiàn)從參賽者中抽取了人,按年齡分成5組(第一組:,第二組,第三組:,第四組:,第五組:),得到如圖所示的頻率分布直方圖,已知第一組有6人

(1)求;

(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));

(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1-5組,從這5個(gè)按年齡分的組合5個(gè)按職業(yè)分的組中每組各選派1人參加知識(shí)競(jìng)賽代表相應(yīng)組的成績(jī),年齡組中1-5組的成績(jī)分別為93,96,97,94,90,職業(yè)組中1-5組的成績(jī)分別為93,98,94,95,90

i)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;

ii)以上述數(shù)據(jù)為依據(jù),評(píng)價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對(duì)“一帶一路”的認(rèn)知程度,并談?wù)勀愕母邢?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, 是線段上一點(diǎn).

點(diǎn).

(1)確定的位置,使得平面平面

(2)若平面,設(shè)二面角的大小為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)其中為常數(shù).

(1)當(dāng)函數(shù)的圖象在點(diǎn)處的切線的斜率為1時(shí),求函數(shù)上的最小值; (2)若函數(shù)在區(qū)間上既有極大值又有極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓右焦點(diǎn)是拋物線的焦點(diǎn),在第一象限內(nèi)的交點(diǎn),且.

(1)求的方程;

(2)已知菱形的頂點(diǎn)在橢圓上,頂點(diǎn)在直線上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,則下面結(jié)論正確的是 ( )

A. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍, 縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度, 得到曲線

B. 上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍 ,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

C. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍 ,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知點(diǎn),圓

I)在極坐標(biāo)系中,以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,取相同的長(zhǎng)度單位,求圓的直角坐標(biāo)方程;

II)求點(diǎn)到圓圓心的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案