【題目】有下列四個說法:
①已知向量, ,若與的夾角為鈍角,則;
②先將函數(shù)的圖象上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;
③函數(shù)有三個零點(diǎn);
④函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
其中正確的是__________.(填上所有正確說法的序號)
【答案】②③④
【解析】
根據(jù)向量,函數(shù)零點(diǎn),函數(shù)的導(dǎo)數(shù),以及三角函數(shù)有關(guān)知識,對各個命題逐個判斷即可.
對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;
對②,先將函數(shù)的圖象上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;
對③,函數(shù)的零點(diǎn)個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點(diǎn)個數(shù),作出兩函數(shù)的圖象,如圖所示:
由圖可知,③正確;
對④,,當(dāng)時,,當(dāng)時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,④正確.
故答案為:②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當(dāng)時,,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上函數(shù)的圖象關(guān)于圖象上點(diǎn)(1,0)對稱,f(x)對任意的實數(shù)x都有且f(3)=0,則函數(shù)y=f(x)在區(qū)間上的零點(diǎn)個數(shù)最少有( )
A.2020個B.1768個C.1515個D.1514個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)坐標(biāo)為別為,,離心率是. 橢圓的左、右頂點(diǎn)分別記為,.點(diǎn)是橢圓上位于軸上方的動點(diǎn),直線,與直線分別交于,兩點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)求線段長度的最小值.
(Ⅲ)當(dāng)線段的長度最小時,在橢圓上的點(diǎn)滿足:的面積為.試確定點(diǎn)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,,,函數(shù),的最小正周期為.
(1)求的單調(diào)增區(qū)間;
(2)方程;在上有且只有一個解,求實數(shù)n的取值范圍;
(3)是否存在實數(shù)m滿足對任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin ωx·cos ωx+ cos2ωx-
(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為 .
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過的直線交軸正半軸于點(diǎn),交拋物線于兩點(diǎn),其中點(diǎn)在第一象限.
(Ⅰ)求證:以線段為直徑的圓與軸相切;
(Ⅱ)若,,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com