【題目】在等腰三角形中,,在線段上,為常數(shù),且),為定長),則的面積最大值為_______

【答案】

【解析】

如圖所示,以B為原點,BDx軸建立平面直角坐標(biāo)系,設(shè)Ax,y),y0,根據(jù)題意得到ADkAB,兩邊平方得到關(guān)系式,利用勾股定理化簡后表示出y2,變形后利用二次函數(shù)的性質(zhì)求出y的最大值,進而確定出三角形ABD面積的最大值,根據(jù)ADkAC即可得出三角形ABC面積的最大值.

如圖所示,以B為原點,BDx軸建立平面直角坐標(biāo)系,設(shè)Ax,y),y0

ABAC,

ADkACkAB,即AD2k2AB2,

∴(xl2+y2k2x2+y2),

整理得:y2,

ymax

BDl,

∴(SABDmax,

則(SABCmaxSABDmax

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xcosx﹣sinx,x∈[0, ]
(1)求證:f(x)≤0;
(2)若a< <b對x∈(0, )上恒成立,求a的最大值與b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點, ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓兩點,且圓心在直線上.

(1)求圓的方程;

(2)若直線過點且被圓截得的線段長為,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)年至年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號

1

2

3

4

5

6

7

人均純收入

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人純收入的變化情況,并預(yù)測該地區(qū)年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點且互相垂直的兩條直線分別與圓交于點A,B,與圓交于點C,D.

(1) 若AB,求CD的長;

(2)若直線斜率為2,求的面積;

(3) 若CD的中點為E,求△ABE面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差為d的等差數(shù)列{an}中,已知a1=10,且a1 , 2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當(dāng)銷售利潤不超過10萬元時,按銷售利潤的16%進行獎勵;當(dāng)銷售利潤超過10萬元時,若超出A萬元,則超出部分按2log5A+1)進行獎勵.記獎金y(單位:萬元),銷售利潤x(單位:萬元)

1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)模型;

2)如果業(yè)務(wù)員老張獲得5.6萬元的獎金,那么他的銷售利潤是多少萬元.

查看答案和解析>>

同步練習(xí)冊答案