精英家教網 > 高中數學 > 題目詳情

【題目】

已知拋物線,過點的直線與拋物線交于兩點,且直線軸交于點.1)求證:,,成等比數列;

2)設,,試問是否為定值,若是,求出此定值;若不是,請說明理由.

【答案】解:(1)見解析;(2)見解析.

【解析】

第一問中,

解:(1)設直線l的方程為:,

聯(lián)立方程可得:① ………………………………2

, …………………………4

,,

|MA|,|MC|、|MB|成等比數列…………………………………………………………6

(2)1:由得,

,

即得:………………………………………………………8

………………………………………………………10

(1)代入得,故為定值且定值為-1 ………………………………13

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中國古代十進制的算籌計數法,在世界數學史上是一個偉大的創(chuàng)造. 算籌實際上是一根根同樣長短的小木棍,用算籌表示數1~9的方法如圖:例如:163可表示為“”,27可表示為“”.現(xiàn)有6根算籌,用來表示不能被10整除的兩位數,算籌必須用完,則這樣的兩位數的個數為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)曲線在點處的切線斜率為,求該切線方程;

(2)若函數在區(qū)間上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓,離心率,且橢圓過點.

(1)求橢圓的方程;

(2)設橢圓左、右焦點分別為,過的直線與橢圓交于不同的兩點,則的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數方程為為參數,).

(Ⅰ)寫出圓的極坐標方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于兩點,且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點的兩條直線分別交拋物線于點、、,線段的中點分別為、.如果直線的傾斜角互余,求證:直線經過一定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,點為線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數,表示購買2臺機器的同時購買的易損零件數.

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據,在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

(1)求的解析式;

(2)試判斷的單調性,并用定義法證明;

3)若存在,使得不等式成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案